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INTRODUCTION 

This report is a summary of the first stage of scientific investigations performed in 

accordance with contract SPC 98-4041 between Institute of Atmospheric Optics SB 

RAN (IOA, Tomsk, Russia) and US Air Force Research Laboratory (AFB Kirtland, 

USA) via European Office of Aerospace Research and Development (EOARD, London, 

UK). This report was devoted to the numerical simulation for optical waves propagating 

in turbulent atmosphere under molecular absorption a high power laser radiation. 

In accordance with the technical conditions the combined effect of thermal blooming and 

turbulence should be considered. These problems are exemplified in the two Chapters. 

To describe a real adaptive system it is necessary to take into account limits of its spatio- 

temporal resolution. 

In Chapter 1 we consider the application of the phase conjugation method for the thermal 

blooming compensation. Analysis of the numerical experiment data has shown that the 

appearance of continuous auto-oscillations in adaptive system is connected with the 

occurrence of dislocations in the reference beam. The use of the Hartmann sensor with 

low spatial resolution and modal estimation of the phase results in smoothing the phase 

estimate and damps the AOS oscillations. 

In the Chapter 2 we apply that even when the turbulent and nonlinear aberrations are of 

the same order, correction for thermal blooming is easier because scales of thermal 

aberrations are greater and frequencies lower. The only exception is a homogeneous path 

in the absence of scanning. In this case the strong thermal lens which appears near the 

beam focus may induce instability and decrease of control efficiency. For a moving 

object this effect can be disregarded. 

So in the present report the main attention we devoted to the problem of compensation 

for turbulent aberrations. 



Chapter 1. The Influence of Wave Front Dislocations on Phase Conjugation 

Instability with Thermal Blooming Compensation 

The present part of report is devoted to the application of the phase conjugation method 

for the thermal blooming compensation. Analysis of the numerical experiment data has 

shown that the appearance of continuous auto-oscillations in adaptive system is 

connected with the occurrence of dislocations in the reference beam. The use of the 

Hartmann sensor with low spatial resolution and modal estimation of the phase results in 

smoothing the phase estimate and damps the AOS oscillations. 



1.1. INTRODUCTION 

The problem of the influence decrease of thermal distortions1 on the high-power beam 

focusing by way of control of the wave front shape at the emitting aperture of the optical 

system is one of the most interesting fields of application of adaptive optics. The known 

methods of phase control can be presented in the form of three groups: 1) a priori 

control2,3; 2) maximization of the focusing criterion4; 3) phase conjugation5,6'7. 

The present part is devoted to the application of the phase conjugation method for the 

thermal blooming compensation.  This problem was discussed previously in a series of 

papers of different authors5"12, and the results of these papers indicatethat the application 

phase conjugation to correct nonlinear distortions of high-power beams has some 

specific features including the instabilities of a different type.    For homogeneous 

horizontal paths the instability appears as parameters oscillations of corrected and 

reference beams7, and For vertical paths the small-scale instability is developed. 

In the above-mentioned papers it was assumed that the wave front ofthe reference 

radiation was determined in all the points ofthe aperture of adaptive system and could be 

measured and reproduced with an arbitrary accuracy by means of some ideal sensor and 

wave front corrector.   At the same time, in the paper13 it was shown that at strong 

distortions of the optical wave front the appearance of singular points was possible, 

where the intensity was equal to zero, and the wave front had the singularities in the 

form of screw dislocations and represented a multisheeted surface. This hypothesis was 

confirmed by laboratory14 and numerical experiments15. As noted in the papers, devoted 

to the problem of dislocations, the appearance of singular points can significantly affect 

the work of adaptive optical systems. However, up to now the investigations are lacking, 

which could allow one to understand in what way the adaptive system will work under 

such conditions.   The purpose of our paper is the investigation of the influence of 



dislocations on the efficiency of phase conjugation when compensating the nonstationary 

thermal blooming of cw beam. 



1.2. Model of Propagation 

Propagation of monochromatic linearly-polarized paraxial beam in an optically- 

inhomogeneous medium is described by the parabolic wave equation for a slow 

component of its complex amplitude16 E = e „ • E ■ exp(zcctf - ikz): 

2ik— = V2
1E + k2(n2-n

2
0)E (1.1) 

dz v ' 

where k = 2%/X is the wave number; co = c/X is the frequency of electromagnetic 

oscillations; X is the wavelength; V* = d2/dx2 + d2/dy2 is the transverse Laplacian; e£ 

is the polarization vector of electric field E; n(x,y,z) is the refractive index.   The 

boundary conditions for the complex amplitude are given as 

E(r,0, t) = A(r) ■ exp[zq>(r, t)], r = (x,y) (1.2) 

where A(x,y) is the amplitude distribution in the beam cross-section in the plane of 

emitting aperture; cp is its phase. For the cw Gaussian focused beam considered here we 

have: 

A(r) = 4, exp(- -Q ; <p(r, *) = ^ + *('• '> 0 •« 

where a0 is the beam radius at the intensity level 1/e; / is the focal length; ®(r,f) is 

the phase correction. A0 is the amplitude on the beam axis.  The field of the refractive 

index in the high-power beam channel in the isobaric approximation is determined by 

temperature distribution in its cross-section, described by the nonstationary equation of 

forced heat transfer for the temperature field1 T: 



f + ™- = i5^-* (1.4) 
T(r,z,t = 0) = T0, 

where W = EE* ■ Sn/cn0 is the beam intensity; V± = (vx,Vy) is the transverse component 

of wind velocity; a is the absorption coefficient; p is the density; CP is the specific heat 

at constant pressure. For small variations of air temperature the connection between the 

temperature and the refractive index can be considered linear: n-n0mn'T(T0)'(T-T0). 

Assuming n0 »1, after substitution in Eq.(l. 1), we have: 

2ik— = V2
1E + 2k2n'T-(T-T0)-E. (1.5) 

dz 

Thus, the nonstationary thermal blooming is described by the set of equations (1.4-1.5) 

together with the boundary condition (1.3). 

Both the reflected (or scattered) radiation and the independent source can serve as the 

reference wave in the adaptive optical system (AOS). Here we consider only the case of 

the independent coherent reference beam, being propagated toward the corrected one 

along the same path. Such an AOS has been realized, for example, in the laboratory 

experiment9. Propagation of the complex amplitude of the reference beam 

V = eu'U- exp(z'cctf + ikz) is described by the wave equation 

-2ik— = V2
±U + 2k2n'T(T-T0)U. (1.6) 

Boundary conditions were given so that in the absence of distortions the complex 

amplitudes of the high-power and reference beams were conjugated in the plane z = 0. 

Hence, their complex amplitudes must be conjugated also in the plane z = /, i. e., 

U{r,f) = El{r,f), (1.7) 



where E0(r,f) is the solution of Eq.(1.5) at T = T0 with boundary conditions (1.3) at 

0 = 0. 

For numerical solution of equations describing the propagation of reference and high- 

power beams we used the splitting method7,17,18 with the symmetrized splitting operator. 

In this case all the fields are represented on the three-dimensional grid with the 

dimension (N±,N±,Nzy. 

E
IA

Z
K) = Eixi>yj>z

K) = E{ri,j>zK)> 

xI = h1-(l-I0); I = 1,2,...,N±, 

yJ = h1-(j-J0);J = l,2,...,N1, 

zK=hz-{K-\); K = 1,2,..,NZ, 

where (/0>^o) are tne values of indices corresponding to the origin of the coordinates, 

(h± ,hx,hz) are the distances between the nodes of the grid. The results of calculations 

given below were obtained at NL = 64, h± = a0/S, Nz = 16, hz = f/16. 



1.3. The Phase Conjugation Method 

The phase conjugation method is.a special case of the more general method of wave 

front inversion based on reciprocity of electrodynamics equations.   As applied to the 

used mathematical model, the reciprocity of the propagation equation means that if the 

complex amplitudes E  and U are conjugated in the plane 2 = 0, then they are 

conjugated in the focal plane z = /, and vice versa: 

£(r,0) = U*(r,0) <* E(r,f) = U\v,f) (1.9) 

Owing to the technical difficulties occurring in the wave amplitude control, in AOS we 

usually restrict ourselves to the phase control, that is, the phase conjugation method is 

used: 

Arg(£(r,z = 0)) = Arg(t/*(r,z = 0)) = - Arg(f/(r,z = 0)) (1.10) 

If the distributions of amplitude modulus of the reference and corrected fields are 

approximately equal 

4r) = |jE(r,0)|«|l/(r,0)|, (1.11) 

(or they differ by the constant multiplier), then one can look forward to high efficiency 

of such a purely phase control. The boundary condition for a corrected beam is of the 

form: 

£(r,0) = A(Y) • exp(-1 • Arg(u(r,0))), (1.12) 

or 

E(r,0) = A(r) • exp(- i ■ arg([/(r,0))). (1.13) 

Mathematical formulation of the phase conjugation method (1.12) has the two 

peculiarities. First, the argument of the complex number is determined accurate to 

2nm,m = ±1,±2,...; second, the argument of zero complex number is not determined. 



If in the case of numerical simulation of an AOS the corrected field is determined 

through the principal value of the argument of the reference wave complex amplitude 

(1.13), then the first peculiarity is unessential. However, in controlling the wave front 

corrector to calculate the approximation of the required surface we need the unwrapped 

phase while the principal value of the argument is limited by the range [- n,+n].   To 

obtain the unwrapped phase the operation of "phase unwrapping" should be fulfilled. It is 

common practice in this case to calculate the phase differences and then the problem on 

the function reconstruction is solved on the basis of the values of its first differences in 

two directions. At numerical simulation the phase difference between the two adjacent 

nodes of the grid is determined as follows 

Ax
u = Arg(t//+V) - Arg(Uu) = arg(C//+iy) + 2%mI+lJ -arg(l7/;J)-2mnu 

= arg(UI+lJ)- arg(Uu) + 2nkx
hJ\kx

u | < 1; 

and  similarly  Ay
u.  The values  of £*y,^ e{-l,0,+l}   are  determined from the 

condition15 A*y < n, Ay
u < n. Similarly the phase differences can be determined as 

Ay
IJ = arg(uiJ+l-UlJ) 

The problem of reconstruction of unwrapped phase from its differences calculated 

from the complex amplitude in the nodes of reference grid, is mathematically equivalent 

to the problem of phase reconstruction from phase differences obtained from the data of 

the shearing interferometer or estimated by the local phase tilt measured using the 

Hartmann sensor. Since the number of difference values is twice as large as the number 

of points, where the phase value must be obtained, such a problem is over determined 

and the supplementary conditions are conventionally superimposed, namely, minimizing 

of square law discrepancy19 



£[(4w -M- Avf+[(*v+i -M-Av]2 -* min (L16) 

,20 

Z(^;,-$v)2)->min- (L17) 

or minimizing of the integral variance of an error estimate 

Here the statistical averaging is denoted by angular brackets, ^u is the sought estimate 

of the phase, $/y is its exact value. In both cases the problem amounts to solution of the 

set of linear equations of the following form: 

4>w + */-u + ♦ v+i+ * v-i - **v = A v + A v - A/-v - A v-i • C1 •! 8> 

When the differences are specified at the homogeneous grid, for solution of this problem 

we can use the method of the discrete Fourier transformation (DFT) and the Fourier fast 

transform algorithm21,22 (FFT) if the number of grid nodes satisfies the appropriate 

requirements. Solution of the set of Eqs (1.18) reconstructs the argument of complex 

amplitude except for an arbitrary constant 

Arg(Uu) = ^,J + C 

UI,j=\Uu\-Qxp[i^IJ+C)\ 

and corresponds exactly to initial values of differences 

«W - hj = XI,JAU+1 - 4> v = Av • (L2°) 

if the field U has no zeros. 



1.4. Screw Dislocations of the Wave front 

In the points where the complex amplitude (CA) of optical wave is exactly equal to zero, 

its argument is not determined. If this point lies on the line intersection, where the real 

and imaginary parts of CA change the sign, this point is the center ofa screw dislocation 

of wave front.   The existence of dislocations was predicted theoretically13 and was 

supported by the results of laboratory14 and numerical15 experiments. 

Let us consider the vector field g = [gx, gy) determined as follows: 

gx(x,y) = lim£arg[£/(x + f ,y)U*{x -*y)] 
(1 21) 

From the viewpoint of determination the field g(p)   is the gradient of the optical wave 

phase, and is truly of this kind if U(r) nowhere becomes zero. 

\u(r)\ * 0^ g = V- Arg(t/(r)). (1.22) 

With dislocations, the field g has peculiarities and ceases to be a purely potential field, 

and the contour integral 

jg-dr = ±2n-(N+-N_) (1.23) 
c 

is determined by the number of dislocations twisted in positive (AT+ ) and negative (iV_ ) 

directions, which are inside this contour13,14. In this case the phase difference expressed 

by the contour integral 

<Kr2H(ii) = }g<fr (L24> 

depends on the integration method, and the equation 

V(|) = g (1.25) 



has no solution. 

It is well known that any vector field g can be represented as a sum of irrotational gx 

and solenoidal g2 components: 

g = gi+g2 (L26) 

and the solenoidal component can be excluded by the use of the divergence 

operator22,23,24, so that the solution of the Poisson equation 

V2(|) = divg = divg1 (1.27) 

corresponds to the potential part of the field g: 

■V4> = gl. C1-28) 

Since the set of linear Eqs (1.18) is the finite-difference representation of the Poisson 

equation (1.27), the algorithm of reconstruction, solving the set of linear equations 

(1.18), "filters" the wave front dislocations, smoothing out the estimate of the phase of 

optical wave. A number of the results on numerical simulation of phase conjugation has 

been obtained based on the boundary condition of exact phase conjugation: 

Eu(0) = Au.exV[iarg(uu(0))] 0-29) 

As a rule, dislocations do not fall accurately on the grid nodes, and the boundary 

condition (1.29) is correct. However, the corresponding analytical boundary condition 

£(r,0) = A(r) • exp[z arg(t/(r,0))] (1.30) 

is not determined at the points where t/(r,0) = 0. When at the same points A(r) * 0, the 

continuity of the field E(r,0) is disturbed and it becomes nondifferentiable. Although 

the grid boundary condition (1.29) can be considered as a result of the corrector 

application, with the element size, being equal to the distance between the grid nodes, 

care must be exercised when interpreting the results of numerical experiment since the 

corresponding analytical boundary condition (1.30) is incorrect. To gain greater insight 



into why the characteristics of boundary condition of the type (1.29) show themselves 

with an appearance of dislocations in the reference beam, the numerical experiment was 

performed, in which we calculated the beam diffraction with the Gaussian intensity 

profile with the boundary condition of the form: 

E(r,6) = A(r) exp[z • arg(x + iy)]. (1.31) 

As is evident from13, the field 

U(r,z) = etf(Bxx + i-Byy), (1.32) 

where y,B ,B   are the real constants, satisfies the parabolic wave equation in vacuum 

and has its dislocation in the origin of coordinates. Thus, the boundary condition (1.31) 

describes the field with dislocation at the point r = 0.   In this case its intensity is 

everywhere different from zero. 

Figure 1.1 gives the 2D intensity repartition of such a beam for different values of 

z' = zjzd, where zd = ka\ is the diffraction length.    In the center of the beam the 

intensity gap is shaped reaching practically zero value atz' = 0.1.  The similar effect is 

observed at compensation of thermal blooming when dislocations appear in the reference 

beam. 



1.5. Phase Correction of Thermal Blooming 

We have conducted the two types of numerical experiments on application of the phase 

conjugation method for correction of thermal blooming. In one case for the corrected 

beam we used the boundary condition of exact conjugation (30), and in the other case - 

the boundary condition (1.3). The phase correction 0(r,/) was obtained as a result of 

simulation of the Hartmann sensor and subsequent model estimating of the reference 

beam phase26'27. 

In both cases we have simulated the "fast" adaptive system, focusing the Gaussian 

beam to the target plane, which is at the distance f = -fezd. In the diffraction-limeted 

case the intensity in the focus of such optical system is 10 times as large as the axial 

intensity on the emitting aperture. In the focal plane we recorded the peak intensityfFmax 

and the radiation power P falling within circle with radius af =a0 -f/zd which was 

equal to the radius of undistorted beam at the intensity level l/e.   About 63% of the 

undistorted beam power falls within this circle.    Simultaneously we recorded the 

appearance and coordinates of dislocations of the reference beam wave front in the plane 

z = 0.  For this purpose in each node of the grid falling in the circle of radius 2a0 the 

value 

Y    -\x   +\y     -A*     -Ay (T 33) 

was calculated corresponding to the integral (1.23) by the contour shaped by the four 

adjacent nodes of the grid. For the majority of nodes E7 3 = 0 with an accuracy up to the 

errors of arithmetical operations.   The nodes, for which I7 y = ±2n, correspond to the 

contours containing one or more dislocations.   If|s(/,J)\>n, we considered that the 



dislocation was discovered, to which the coordinates (xd,yd) of the contour center were 

attributed: 

*, = M/ + Wo)^ = *±(-/ + Wo) (1-34) 

Clearly, such a method does not permit detecting a pair of dislocations with different 

signs falling into the contour considered, but in this case they do not affect the results of 

solution of the propagation problem. 

Let us consider the results of simulation of the precise phase conjugation. Figure 1.2 

present the curves indicating the dependence of peak intensity Wm3K and the coordinates 

of dislocation xd on the time t, normalized as follows7: 

f = _LtX -^;W.=wrt^;p. = p*S!^;x'=?L (1.35) 
V V pCPV±n0 pCPVLn0 a0 

(later the primes of normalized values are omitted). The diagrams are given for the two 

values of axial intensity of the beam: W0 =16 and W0 = 24. At the beam intensity 

W0=16 (curve 1) the dislocations do not appear and the beam parameters become 

stationary. With the increase of beam intensity up to 24 we observed the intensity 

oscillations (curve 2) followed by periodic appearance of dislocations in the reference 

beam (curve 3). Dislocations appear close to the axis of the optical system and translate 

in the direction coinciding with the wind direction V = (Vx,0), Vx>0, until they do not go 

out from the registration zone x] + y2
d < (2a0)

2. At increase of intensity up to 32 resulted 

a new pair of dislocations appeared before the preceding pair had gone out from 

registration zone. 

Figure 1.3 shows the typical intensity distribution of a corrected beam in the cross- 

section z = f/32. The two intensity gaps, traveling to the lee edge of the beam, 

correspond to the two dislocations in the phase of the reference beam. 



To understand the mechanism of origination of oscillations, given in Fig. 1.2, the 

coordinate of cross-section zmax was recorded, in which the peak intensity of a corrected 

beam is maximal, that is, the position of beam waist. 

Figure 1.4 shows the dependence of position of beam waist zmax and peak intensity in 

it on the time.   At the intensity WQ-16 the beam waist is gradually shifted to the 

emitting aperture and its position is stabilized at the markzmax » 0.85 • /. At W0 = 24 the 

waist is shifted close to the emitting aperture and its position varies near the point 

zmax » 0.4 • / with the amplitude of the order of Azmax » 0.15 • /.  At the same time, the 

intensity in the waist much exceeds the initial intensity of the beam.   The period of 

oscillations of waist position coincides with the period of dislocation appearance.  This 

effect can be interpreted as the manifestation of positive feedback between the adaptive 

system and the thermal lens. At the initial stage of heating t < xv the main contribution 

to distortions is introduced by defocusing.   Its compensation results in an additional 

focusing of high-power beam and its waist shift to the source.   The waist becomes 

narrower, and its intensity increases that leads to the medium temperature increase in the 

beam waist and to amplification of defocusing strength of the thermal lens. This results 

in subsequent shift of waist and so on. 

The thermal lens shift to the emitting aperture decreases "the feedback coefficient". In 

the limiting case when the thermal lens intensity is concentrated close to the AOS 

aperture and the additional focusing, contributed by AOS, is compensated by the 

defocusing thermal lens, we do not observe the subsequent increase of defocusing of 

reference beam and focusing of high-power beam. If the distortions in the high-power 

beam waist achieve the value sufficient for appearance of dislocation in the reference 

beam, the information on the defocusing introduced by thermal lens, is erased without 

reaching the adaptive system, and the high-power beam focusing causing whereas its 



waist to be shifted to the target. As a result, the intense thermal lens, being thecause of 

the occurrence of the dislocations, begins to cool off and some time later the lens is 

cooled to the state when dislocations disappear and the feedback is reconstructed. Then 

the whole cycle is repeated and the system develops into the regime of auto-oscillations 

typical for nonlinear systems with feedback. 

At subsequent stage of work the AOS was simulated with a Hartmann-Shack sensor, 

consisting of 16 subapertures arranged in four rows. The fourcorner subapertures were 

not taken into account, and local tilts were estimated only in 12 subapertures (Fig. 1.5). 

The size of the sensor aperture D = 4a0 corresponds to the beam diameter at the intensity 

level l/e2. The reference beam was fed to the sensor after passing through correcting 

and focusing systems: 

(   kr2 \ 
U(r,0, t + At)- exp i— + zO(r, t)  . (1.36) 

v £j J 

The phase correction was determined as a sum of Zernike polynomials Z^ 

O(r,0) = 0, 

<3>(r,t + At) = ®(r,t) + A<!>, (1.37) 
15 ( r\ 

1=2 v2a0y 

with the weight factors ce obtained by modal estimating the phase25,26,27 on the circle 

inscribed in the sensor aperture. 

Figure 1.6 shows the dynamics of peak intensity at the target for three values of initial 

beam intensity. In all the three cases the oscillations are lacking, i. e., the application of 

the Hartmann sensor with modal estimate damps the oscillations or, at least, increases 

the threshold of their appearance. Nevertheless, the dislocations in the reference beam 



could appear. It turned out that in the focal plane of the sensor subaperture to which the 

dislocation comes, the two focal spots are observed, each having the diffraction size 

(Fig. 1.7). In contrast to AOS with a precise phase conjugation the position of 

dislocations remained relatively stable. 

Since the phase correction is now determined by the weighted sum of the Zernike 

polynomials it is possible to control directly the aberration spectrum of phase correction. 

The above considerations enable us to assume that the positive feedback between the 

adaptive system and the thermal lens is closed mainly by the control of quadratic 

aberrations. In this case such a feedback affects negatively the correction efficiency. 

Besides, it is known that with thermal blooming the optimal focal length is larger17 than 

in vacuum while the adaptive correction decreases the focal length of the system, 

compensating the thermal lens effect. 

The first step that we can propose for decreasing the harmful influence of this effect is 

the complete exclusion of the focusing control: 

15 (      ^ 

v2V 1 = 2 

It turned out that excluding astigmatism control 

>«, = '     • a-38) tm    \l,£ = m 

AO = X(l-5,j4)-(l-5,5)-(l-5,6)-CÄ, (1.39) 
1=2 

gives an additional increase of correction efficiency.     Since except for quadratic 

aberrations the tilt and coma contribute greatly, the correction by Eq.(1.39) results in 

mainly beam pointing and straightening of a characteristic "sickle", owing to coma. 

Figure 1.8 shows the steady values of parameters of a corrected beamas a function of 

the initial intensity when correcting by the formula (1.37) (curve 1) and the formula 

(1.39) (curve 2), that is, without control of total beam focusing and astigmatism. Curve 3 



in this figure corresponds to the precise phase conjugation (the boundary 

condition(1.29)), and the curve 4 corresponds to the system without correction. The data 

for precise phase conjugation are obtained by averaging over time the corresponding 

instantaneous values. 

It is seen that the correction efficiency by the formula (1.37) is somewhat lower than 

the efficiency of precise phase conjugation while the correction by the formula (1.39) 

(with disconnecting of control of quadratic aberrations) is more effective than the precise 

phase conjugation starting from the power, at which the dislocations and auto-oscillating 

regime take place (W0 «20-r24). Together with optimization of the beam initial 

intensity the correction by the formula (1.39) gives a gain in peak intensity in the focal 

plane more than twofold as compared with the system without correction and 

approximately 1.5-fold gain as compared with precise phase conjugation and the gain in 

power P is 3-and 1.5-fold, respectively. 

The exclusion of control of quadratic aberrations will not, to be sure, give the best 

gain in all situations. For the beams with the non-Gaussian profile of intensity and foia 

vertical path or with beam scanning the results may be different.  In particular, for the 

vertical path the small-scale instability is more typical; for suppressing the above 

instability one must exclude the small-scale part of the reference beam phase8. 



1.6. Conclusion 

We consider the problem of compensation of nonstationary thermal blooming by the 

phase conjugation method. Analysis of the numerical experiment data has shown that 

the appearance of continuous auto-oscillations in adaptive system is connected with the 

occurrence of dislocations in the reference beam. 

The use of the Hartmann sensor with low spatial resolution and modal estimation of 

the phase results in smoothing the phase estimate and damps the AOS oscillations. 

Adaptive compensation of defocusing and astigmatism results in the shift of the beam 

waist to the source and in the appearance of strong thermal lens. Elimination of the 

quadratic aberrations control weakens this effect and increases the efficiency of thermal 

blooming correction along the homogeneous path. 

This project was made possible with support from the following grants:No. 1000/1300 

from the International Science Foundation and No.94-02-03027a from the Russian 

Foundation of Fundamental Researches. 
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Fig. 1.1. Intensity cross sections at beam diffraction with boundary conditions (1.31) in 

vacuum. From left to right z' = 0.03, z' = 0.06, z' = 0.09. 

3** 100 

Fig. 1.2. Dynamics of peak intensity Wmgx of a corrected beam in focal plane: 1-at the 

beam initial intensity, W0 = 16; 2-W0 =24; 3-the coordinate of the reference beam 

dislocation xd(f)aX W0 = 24. 



Fig. 1.3. Intensity distribution of a corrected beam in the cross section z = f/32 when 

originating the wave front dislocations in the reference beam. W0=24. The first series: 

t = 0.50; 0.52; 0.54; the second series: t = 0.56; 0.58; 0.60. 
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Fig. 1.4. Dynamics of beam waist position of a high-power beamzmax(^); 1 

2 - W0 = 24; 3 - peak intensity in the caustic for W0 = 24. 
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Fig. 1.5. Configuration of the wave front sensor. 
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Fig. 1.6. Dynamics of peak intensity Wmax(t) 

in the AOS focus with the Hartmann sensor. 
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Fig. 1.7. Dynamic of intensity distribution in the subaperture focus of the Hartmann 

sensor at dislocation origination in the reference beam. 
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Fig. 1.8. Dependence of peak intensity Wmax (a) and the power at the target P (b) on the 

beam initial intensity W0 for different versions of AOS. 1 -AOS with the Hartmann 

sensor (37); 2 -AOS with the Hartmann sensor (39); 3-precise PC (phase conjugation); 

4-without correction. 



34 

CHAPTER 2. Adaptive Correction of Laser Beam 

A laser beam propagating in the atmosphere are influenced simultaneously by 

thermal blooming and turbulence that results in aberrations of a focal spot. Character of 

thermal blooming depends not only on atmospheric conditions but also on beam power 

and velocity of a target. Turbulent aberrations prevail at large speed of scanning, from 

this point of view they are more important. 

In the previous chapter it was pointed out that thermal aberrations of laser beams 

decrease sharply as the object velocity increases. Effectiveness of phase correction for 

thermal blooming increases at increase of scanning velocity, because in this case the 

thermal lens is placed near the transmitting aperture. 

On the contrary, effectiveness of correction for turbulent aberrations decreases 

when the object velocity increases. Turbulent aberrations do not depend on speed of 

angular scanning but in the case of a moving object the requirements to the adaptive 

system bandwidth are higher than that for a motionless target. 

The stated above is also true for the low atmosphere paths when a source is placed 

on the earth and an object altitude is a few kilometers. In this case the influence of 

thermal blooming is less comparing with turbulence because the coefficient of 

atmospheric absorption decreases more abruptly than intensity of turbulent aberrations. 

Additional factor of thermal blooming decreasing is angular scanning. 

Even when the turbulent and nonlinear aberrations are of the same order, 

correction for thermal blooming is easier because scales of thermal aberrations are 

greater and frequencies lower. The only exception is a homogeneous path in the absence 

of scanning. In this case the strong thermal lens which appears near the beam focus may 

induce instability and decrease of control efficiency. For a moving object this effect can 

be disregarded. 
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2.1. Adaptive Optics Correction of Laser Beams on High Altitude Extended Paths 

and on Lower Atmosphere Paths with Real Beacons 

Considering the problem of adaptive correction for turbulent aberrations a number 

of factors should be allowed for. These factors are connected with the peculiarities of 

aberrations and also with spatio-temporal characteristics of a system elements. 

In this section the results of computations of the main parameters of adaptive 

optics system are presented, in the first order approximation the requirements to the 

system characteristics are formulated, and efficiency of correction are assessed on the 

given paths. The importance of such parameters as ratio of an aperture diameter to the 

coherence length, variance of beacon wave intensity fluctuations, and frequency 

bandwidth of a system are clearly shown. 

The requirements to the beacon intensity are also considered as well as possibility 

to create a corresponding beacon. 
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2.1.1. Phase Fluctuations 

Turbulent inhomogeneities of refraction index induce phase fluctuations of optical 

radiation1,2. In the problem of adaptive correction such characteristic of phase aberration 

as ratio of an aperture diameter to the coherence length is most important. The size of 

sensor subapertures and choice of wave front corrector are defined by this parameter. 

In the problems of compensation for turbulent aberrations considered here an 

adaptive optics system detects and reproduces phase aberrations of a reference wave. 

When beacon is formed by reflection or scattering, reference wave is generated by a 

number of point sources. Because of this a coherence length r0 should be assessed using 

an equation for spherical wave originated in the target plane3: 

r0~5/3 = 0.423/c2 |Cn
2(x)Q5/3 (2A>> 

0 

where 

Q = 1, Q = 1 - x/L (2 2) 

for a plane and spherical wave, respectively, x - is a distance from the aperture of 

adaptive system. Let us consider the results of computation of coherence length 

performed under the conditions of average turbulence for wavelength A,=1.315 urn 

(Fig. 2.1). For paths in the lower atmosphere which we are interested in the coherence 

length is in the interval 5 - 15 cm, excluding focusing at low-altitude flying objects 

(Ht= 100-500 m) when on paths Z>10 km, r0 decreases to 3 - 5 cm. On paths in the 

upper atmosphere the range of r0 values are more wide, it extends from a few 

centimeters to one meter. It should be noted that coherence length depends strongly on a 

source height Hs. When Hs increases from 10 to 20 km, the value of r0 increases on an 

order of magnitude. 
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As pointed out above, an important parameter characterizing an adaptive optics 

system is the ratio of an aperture diameter to the coherence length D/r0. The results of 

this parameter calculations on the low atmosphere paths are presented in Fig. 2.1 for 

D = 0.5 m, and on the upper atmosphere paths for D = lm. 

In the first case a normalized diameter D/r0 is not greater than 10 on paths 

L< 10 km. This means that an adaptive optics system with the size of an element 

d = D/lO can effectively compensate for turbulent aberrations. Here d is the inter- 

actuator spacing or/and subaperture size. 

Calculations for paths in the upper atmosphere show that when source is placed on 

20 km height, the correction for general tilts is sufficient6, because D/r0 < 4. When 

/^=10km in most cases spatial resolution d = D/\0 is sufficient excluding paths 

directed at -2° and - 3° to the horizon. 
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2.1.2. Amplitude Fluctuations 

Rejection of information carried by the amplitude of a beacon wave imposes 

principal limits on the effectiveness of phase only correction. Let us assess the range of 

path lengths where phase conjugation yields substantial growth in intensity of a focal 

spot. 

Let us consider a homogeneous path. For this problem we have the following 

initial parameters: wavelength of optical radiation X (corresponding wave number is 

k = 2-KIX), path length L, and intensity of fluctuations C„2. Using these parameters it is 

possible to assess magnitude of phase and amplitude fluctuations of a beam. In 

approximate estimations it is possible to use the following formulas for coherence 

length r0 and variance of plain wave log-intensity fluctuations1'2 a\: 

r0-
5'3 = 0A23k2C2

nL , (2.3) 

a2 = 0.307C2/c7/6L11/6. (2.4) 

Here we used a coherent length as defined by Fried5, a definition introduced by 

Tatarskii1 differs by the coefficient 

pf3 =l46k2C2
nL,   A-0*2.1PO. (2.5) 

These parameters for spherical wave and for a beam differ by the coefficient 

r0-
5'3 = QISQ/c^L , (2.6) 

a2 = 0.124C2/c7/6L11/6. (2.7) 

From the formulas presented above it follows that variance of log-intensity 

fluctuations are related with the ratio of path length to diffraction length calculated over 

the coherence length 

(2.8) ( i  \5'6 

< = °-726 
\kr2j 
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The index of scintillations ß0
2 is often used to describe intensity fluctuations. In the 

region of weak fluctuations the index can be defined as 

f L f6 (2.9) 
ß^ * 4aJ = 2.9 kr? V«r0 

Let us note that by combining initial parameters X, L, Cn
2 another two parameters can be 

formed that completely determine amplitude and phase correlation characteristics 

p, = k3C2
n, p2 = k-'L . (2.10) 

Because we are interested in determining phase correction efficiency as 

function of relation between phase and amplitude fluctuations it is more convenient to 

use such parameters as coherence length and scintillation index for a plane wave. There 

are the following relation between these parameters: 

r0-
5/3 = 0.423p, • p2, ß* = 1.23p, • p^6 (plane wave), (2.11) 

r0"5/3 = 0.159p, • p2, ßo = 0.496p, • p2
1/6 (spherical wave). 

Although these equations hold only for weak fluctuations, they can be used as 

parameters of a problem with fluctuations of greater intensity. 

Growth of intensity fluctuations influence efficiency of phase correction in two 

ways. From one hand, the loss of information carried by amplitude of the reference 

wave results in incomplete correction for aberration even in the case of an adaptive 

system with infinite spatio-temporal resolution. 

From the other hand, at high enough strength of the fluctuations wave front 

dislocations7 take place. In this case phase front cannot be represented as continuos 

function of coordinates as required for efficient correction. It affected mainly the 

process of phase aberration detection, because discontinuous phase surface can be 

approximated by a segmented mirror. 

Algorithms of phase reconstruction that use finite-difference representation of a 

Poisson equation4  are  employed in  a Hartmann  sensor as  well  as  in a  shift 
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interferometer. Such procedure is equivalent to filtration of a curl component of phase 

which carries wave front dislocations. So the curl component is considered as noise and 

the potential component remaining after filtration is a continuous function of 

coordinates and can be reproduced by flexible or segmented mirror with precision 

defined by spatial resolution of a mirror. But the curl component also carries some 

information that are lost at filtration, and because of this, the system efficiency is lower. 

Let us consider this effect taking as an example a problem of image correction. In 

this case the loss of information carried by an amplitude of a wave does not influence 

notably the efficiency of correction, deterioration of image quality are caused only by 

the loss of the curl component of phase fluctuations. 

In such conditions the problem of image correction can be formulated in the 

following way. A plane wave emitted by a point source placed at infinity is incident on 

a layer of a randomly inhomogeneous medium. In the plane of receiving aperture phase 

and amplitude fluctuations are characterized by parameters r0 and ß0
2 which are 

parameters of wave propagating in a randomly inhomogeneous medium. A parameter 

which characterize a system of imaging is a ratio of a telescope aperture diameter D to 

the coherence length. The criterion of correction efficiency is Strehl ratio, that is a ratio 

of axial intensity of long exposure image of a point source to diffraction limited value 

of this parameter. 

In numerical experiments it was assumed that spatial resolution of a sensor and 

wave front corrector is equal to the step of computational grid. Because fluctuations 

with scales less than the step of a grid are absent in numerical experiments, this 

assumption means infinite spatial resolution. To avoid decreasing of turbulent 

aberration intensity due to omission of small scales, the grid step was chosen from 

inequality A < 0.3r0. Algorithm of phase reconstruction was realized with the use of 

discrete Poisson equation. 



41 

4<p,.y - <P/+i.y - <P/-i.y - <P/./+i " <P,./-1  = A/-i.y + A/,y-i " AU " AU (2.12) 

/,y =I,...,A/ 

Differences in the right-hand part of the equation were computed using the values of 

complex amplitude E in nodes: 

A*,y = arg^.^.E;,,.), A^y = arg^,,^). (2.13) 

Periodic boundary conditions have been used to solve the problem. 

Strehl ratio as a function of scintillation index is shown in Fig. 2.2 for different 

diameters of an aperture. Sharp decrease of efficiency is seen for ß0
2>l. At ß0

2 = 3 

Strehl ratio is less than 0.1 for all D/r0> 10. Thus to achieve high efficiency of 

correction the condition ß0
2<\ should be fulfilled. Partial correction is posible at ßfel- 

3. 

Let us consider influence of amplitude fluctuations in a randomly inhomogeneous 

medium on quality of phase correction of spatio-limited beams. In this case decreasing 

of efficiency of phase-only correction at increasing of amplitude fluctuations in a 

reference wave induced by two factors. There are, firstly, the loss of information 

carried by an amplitude of a reference wave, and, secondly, the loss of information 

contained in curl part of wave front phase. Let us consider the influence of amplitude 

fluctuations on Strehl ratio assuming that phase correction is exact. In this case 

boundary conditions for complex amplitude of corrected beam E0 include an argument 

of a reference beam complex amplitude Er: 

E0{p) = A(p) • exp(- / arg Er(f>)). (2.14) 

Strehl ratio in a focal plane of corrected beam vs. scintillation index is 

presented in Fig. 2.3.   The scintillation index was computed for spherical wave the 

source of which is placed in a focus of corrected beam.  In Rytov approximation the 

scintillation index for spherical wave can be defined as 
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ß^ = 0.496/c7/6Cn
2Z.11/6. (2.15) 

In reality, a beam conjugated with diffraction-limited corrected beam is used 

in numerical experiments. The value of scintillation index was taken as for a spherical 

wave because after the waist this beam spreads like a spherical wave. It is seen from 

the results presented in Fig. 2.3 that high enough quality of correction can be obtained 

for all considered values of ß0
2. To our surprise Strehl ratio is almost independent of 

normalized beam size D/r0 = 2a0/r0. Moreover, the quality of correction increases when 

the ratio D/r0 increases. Let us note that in our problem decreasing of D/r0 causes 

increasing of reference beam diameter, as a consequence, a beam becomes more close 

to a plane wave for which scintillation index of intensity fluctuations is almost two 

times greater than that for a spherical wave. It can be one of possible cause of Strehl 

ratio decreasing at small values of D/rQ. 

Another cause of Strehl ratio decreasing can be implicitly defined inner scale of 

turbulence l0, which is equal to step of computational grid. At increasing of D/r0 

(actually, at decreasing of r0) ratio r0//0 decreases, that means taking out of 

consideration small scale amplitude fluctuations and increasing of correction efficiency 

at large D/rQ. 

In spite of the pointed out shortcomings, which are connected with peculiarities of 

numerical simulation, the results obtained allow one to obtain reasonable estimation of 

phase correction efficiency under the conditions of strong amplitude fluctuations. 

Now let us consider phase correction taking into account the fact that ordinary 

adaptive optics system corrects only smooth component of a wave front. Phase 

dislocations that appears with strong intensity fluctuations are filtered in the process of 

phase restoration on the basis of Eq.(2.12) like a noisy component of a signal. It is an 
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additional factor that decreases efficiency of phase correction for turbulent aberrations. 

Boundary conditions used in numeric experiment can be formulated as 

E0(p) = A(p)exp(- /F[E,(p)]), (2.16) 

where F is operator describing the method of solution for Eqs. (2.12) and (2.13). 

The dependence of the described phase correction from the scintillation index is 

shown in Fig. 2.3. As it can be seen, the values of Strehl ratio are close to 0.1 even at 

ß0
2 = 1.5. So the efficient phase correction required the fulfillment of condition ß<?<\. 

This condition gives us the possibility to assess the feasibility of adaptive 

correction on the paths which we are interested in. Let us consider values of ß0
2 

computed for a spherical reference wave (the results are presented in Fig. 2.4). The 

calculations have been performed at X = 1.315 urn using the following formula: 

ß* = 4 • 0.563/c7'6 )c2
n(x){(L - x)x/Lfdx . <2-17) 

0 

Obviously, limitations associated with amplitude fluctuations are the main factor 

contributing into aberrations for a system placed at altitude H=10 km. In this case for 

most paths and angles condition ß0
2 < 1 is not fulfilled. At the same time for Hs = 20 

this condition is fulfilled for most paths excluding the path directed at -3° to the 

horizon. It should be noted that for other paths the turbulent aberrations are not strong. 

Changing wave length to 3.8 urn it is possible to achieve threefold decreasing of ß0
2 that 

allows us to obtain higher efficiency of adaptive correction on different paths, in 

particular, for HS=10 and for angles greater than 0. 

For the low atmosphere paths amplitude fluctuations are also important. In many 

cases for such paths ß0
2 > 1 and sometimes increases up to 10. In other cases values of 

ß0
2 are in the interval 0.1 -1. 
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2.2. Bandwidth Consideration 

In the previous part we have considered limitations induced by amplitude 

fluctuations in the reference wave. To make an analysis more complete we should also 

consider limitations associated with finite bandwidth of adaptive optics system. The 

bandwidth can roughly be estimated with the use of formula proposed by Greenwood3: 

f;5'3 = 0.102 • k2 ■ \c2
n{x) ■ V5/3(x)dx , <2-18) 

0 

where Fis the sum of wind velocity and the velocity of a beam travel due to scanning. 

The frequency defined by Eq.(2.18) corresponds to unit variance of residual phase 

aberrations for a system dynamic characteristics of which are described by a frequency 

filter: 

H(f,fc) = ^ + if/fc)'\ (2.19) 

This equation is typical for resistor - capacitor electric circuits.   The results of 

bandwidth calculations are presented in Fig. 2.5.    Atmospheric wind had constant 

velocity 10 m/s. Let us note that when the speed of scanning is large the wind speed 

can be neglected. 

The presented results show that quick movement of a target sets strict conditions 

on the bandwidth, in some cases frequency should be greater than 10 kHz. It should be 

emphasized that dependence of frequency fc on the distance to the target is changed 

when an angle is changed from negative to positive values. 

For ct=+3° at increasing of the distance to the target the frequency^ decreases. It 

is due to decreasing of the velocity of scanning in the regions close to the source where 

the main turbulent perturbations are concentrated. 
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For a=-3° increase of the distance to the target induces increase of frequency fc 

because the region near the target contributes significantly to aberrations of the wave 

front. 

At ct=0° these effects compensate each other and frequency fc is almost 

independent of the distance to the target. 

Taking into account frequency characteristics of the adaptive optics system, from 

the results presented above one can conclude that high-altitude flying objects are more 

easily to shot down at long distances. Whereas probability to shot down low-altitude 

flying objects greater at short distances. 

For the low atmosphere paths the frequency of the system must be in the interval 

from 1 to 10 kHz (Fig. 2.6). Only for objects moving with speed less than the speed of 

sound frequency less than 1 kHz is sufficient. 

The formulated requirements to the frequency characteristics of the adaptive optics 

system are strict because of small intensity of a reference wave when beacon is formed 

by scattering or reflection of optical radiation. 
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2.3. Anisoplanatic Degradation of Correction with Real Beacon 

An effect of anisoplanarity is caused by difference of aberrations on paths of the 

direct and reference beams. These differences are due to variances of path geometric 

characteristics (different angles or divergence) or due to the presence of temporal lag. 

In many cases the causes of these factors are similar, moreover, methods of their 

mathematical representations are similar too. 

Let us consider the problem of compensation for turbulent aberrations in 

approximation of a phase screen placed on a path in some point with coordinate x. 

Using the approximation of 5-correlated in the direction of propagation turbulent 

fluctuations in that follows we perform integration over x variable. 

We assume that a random screen (p(p^,0 is placed at the point x in moment t, 

where p is transverse coordinate. According to Taylor's hypothesis of frozen 

turbulence the parameters of a phase screen in different moments of time can be related 

in the following way: 

<p(p, x, i + x) = q>(p - Vz, x,t + x) = cp(p - Vf - Vt, x,o). (2.20) 

From here follows the similarity of mathematical description for angular unisoplanarity 

and temporal lag. 

Beacon angular coordinates and direction of a system optical axis we describe by 

variables QB(t) and QA(t). For an object (target) moving with speed v = AT330m/s in the 

transverse direction the angular coordinate Qj(t) is changed as 

&T(t) = vt/L = cDf. (2.21) 

In the case of a beacon formed by reflection from a target QB(t) = Qj(i). Allowing 

for shift of an object, finite speed of light c, and lag id of adaptive system Rayleigh 

beacon can be formed beforehand. In this case 
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eB(0 = eT(f) + 2viJL + xdv/L = QT(t) + 2v/c + xdv/L , xc = L/c . (2.22) 

In general 

es(0 = eT(0 + T, • {2vc + xdv/L] , (2.23) 

where TJ > 0 corresponds to a beacon with forestalling, r| = 0 corresponds to a 

beacon without forestalling. 

In the choice of direction of the axis of an adaptive optics system the lag associated 

with a finite speed of light also should be taken into account. Thus 

9^(0 = Qr(t)+v- xJL = MO + v/c. (2.24) 

A line directed at angle 6 crosses plane x at the point 0X. So crossing the screen a 

reference wave radiated in a moment t acquires the aberrations 

9ß(p) = <P(P + 6s(f )*, t +(L - x)/c) = cp(p + QB(t)x - (L - x) ■ V/c , t).        (2.25) 

Here we assumed that the time of reference wave propagation to the phase screen 

is (L-x)/c. 

At the time t+L/c the reference wave attains the aperture of an adaptive optics 

system and at the moment t+Llc+xd correcting surface is formed with the use of the 

information carried by this wave. 

The controlled beam arrives at the phase screen at the moment t+Llc+xd+xlc and 

acquires the following aberrations: 

<p„(p) = cp(p + QA(t + L/c + xd)-x,t + L/c + Td + x/c) = (2.26) 

= <p(p + QA(t + L/c + xd) ■ x -V • (L/c + xd + x/c), t) 

Comparing Eqs. (2.25) and (2.26) we can see that the residual error of correction is 

caused by relative shift of the phase screen. This shift is 

A = [eA(t + L/c + xd) - efl(f)] • x - V[xd + 2x/c\. (2.27) 

Substituting into this formula Eq. (2.24) we obtain 
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A = [v/L (t + xd) + 2v/c - 9fl(f)] -x -V[xd + 2x/c] (2.28) 

and using Eq. (2.23) we find 

A = v ■ (xd ■ x/L + 2 X/C)(1 - r|) - V ■ [xd + 2x/c\. (2.29) 

When rd = 0 the formula becomes more simple 

A = 2X/C(V-(1-TI)-V). (2.30) 

The relative shift can be nullified by appropriate choice of parameter 77 

Tlo=1-V^- (2.31) 

If wind speed Fis equal to an object speed v, the optimal value of parameter TJ is 

equal zero, i.e., the beacon formed by reflection is optimal. When v»V, optimal value 

of TJ approaches unity, i.e., the forestalling Rayleigh beacon is optimal.   In the case 

when the object moves in the direction opposite to the direction of wind, the value of TJ0 

is greater than unity. 

At lags zd greater than zero the shift A can be nullified if 

_       V_    xd + 2x/c (232) 

^° v Tdx/L +2x/c' 

In the case when turbulence is concentrated near the object, i.e. x = L, we obtain 

■Ho =1-^. (2-33) 

In this situation the optimal value of parameter % is not influenced by the lag. In the 

opposite situation when x - coordinate approaches zero we obtain 

V   1 Tw x„c dK 

T)°M l     v x xd/L +2/c' 2  ' 

or 

(2.34) 

Vl-777^ »2L/c = 2xc. (2-35) 
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In the region close to aperture (coordinate x is small) unity can be disregarded in this 

equation, so 

TI   «-   L/V (2-36) 110        x / V ' 

i.e., when the velocity of wind and the object are of the same direction, the parameter of 

forestalling approaches negative infinity, and positive infinity when the object moves in 

the direction opposite to wind. 

In the general case turbulence is distributed all over the path, so we have to 

consider a set of phase screens. Moreover, the dependence of wind speed on the 

coordinate x should be allowed for, this means that phase screens should move with 

different speed. 

In the general case optimization of a beacon forestalling angle is difficult. 

Moreover, the intensity of Rayleigh beacon is too small to perform phase correction. 

But in some situations optimization of a beacon forestalling is profitable. 

To assess the efficiency of correction the variance of residual error must be 

computed. In the general case this variance is an integral over the path of some 

function dependent on the turbulence intensity distribution C„2(x) and on the shift A(x). 

The required equation can be obtained from the well-known formula describing 

angular unisoplanarity because in both cases the origin of the residual error is the same. 

For angular unisoplanarity variance of residual phase errors is8 

< = (e/e0f
3 = e5/3 • 2.91/c2)c2

n{x)x5/3dx. (2-37) 
0 

Because the product of 9 and x is the shift of trajectories of a reference and the main 

beams we can obtain the following equation: 

a*f = 2.91/c2)c2
n(x){Qxf3dx = 291/c2fc 2(x)A5/3(x)dx . <2-38) 
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Let us note that for a phase screen, i.e., for a thin turbulent layer characterized by the 

coherence length 

r;5'3 = d423k2c;&x , (2.39) 

equation for the variance has the form 

< = 6.88(A/r0)
5/3. (2.40) 

This equation coincides with phase structure function written for coordinate difference 

A. It should be noted that variance of the residual error calculated according these 

formulas allows for the constant phase component (piston). Because this component 

does not influence the efficiency of correction, the efficiency will be underestimated. 

Accuracy of Eq. (2.38) increases when the ratio AID (D is the aperture diameter) 

decreases. Equation for variance without constant component of the phase is presented 

in Ref. 9. Using designations introduced in the present report this equation can be 

written in the form 

< = 2.91 • k2)cl{x)D (xTf (|A(x)|/D (x)>* , <2-41) 
0 

where 

f (a) = 0.896 • jV8/3cft/(l - J0(2ow))fl " 4 ^l (2>42) 

0 \ "        / 

is spatial filtering function. Function D(x) is a projection of a system aperture diameter 

on the plane x. The character of reference beam divergence and the direct beam 

focusing is taken into account. For beams with large diameters and for small beacons 

the equation of spherical wave can be used 

D(x) = D -(1-x/L). (2.43) 

For small values of an argument the filtering function/can be written as 

f(ct) = a5/3 (2.44) 
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and Eq. (2.41) transforms into Eq. (2.38). For large values of the argument the filtering 

function achieves saturation and resulting values of variance of phase correction error 

achieve the level two times higher than that for a system without correction 

a2jA/D -+ oo) = 2 • 1.03(D/r0)
5/3. (2.45) 

Function J[a) is presented in Fig. 2.7. The points signify values obtained by numeric 

integration. Solid line is a result of these data approximation by a polynomial fitting of 

ninth power. Approximation was performed in logarithm coordinates 

n=0 
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Coefficient of approximation are presented in the table below 

(a) -4</g(a)<0 

«=0 n=\ n=2 H=3 n=4 

-0.90300263 +0.5463099 

1 0.007500502 

9 

+1.9852349 +3.0232371 

n=5 n=6 n=l «=8 n=9 

+2.2959981 +1.0072076 +0.2573047 +0.0354913 +0.0020411 

7 19 442 

(b) 0<lg(a)<4 

n=0 

-0.90300481 

n=5 

+0.0428626 

86 

n=\ 

+0.4697363 

8 

n-6 

0.002471344 

7 

n=2 

-0.41229668 

n=l 

0.002011873 

8 

«=3 

+0.2989732 

2 

n=S 

+5.333567E- 

4 

«=4 

-0.15200895 

n=9 

4.1574399E- 

5 

Using this approximation the variance of correction error have been obtained for 

different paths. At the correction with the use of a reflected signal let us consider the 

influence of the lag arising due to finite speed of light, i.e., when 7/=0 and rd = 0. At 

increase of the object speed the residual error of correction increases. Because of this 
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fact there are a limit on the object speed corresponding to the given residual error. Let 

us assume the residual error be equal 10% from its level without correction, i.e., 

< < * < = 0.1 • 1-03(D /r0f = 0.103(D /r0f. (2.47) 

The values of maximum speed calculated for this level of residual error are 

presented in Fig. 2.8. All calculations have been performed at constant wind velocity 

equal to 10 m/s. The direction of the object motion and the wind speed coincide. It is 

seen that, as a rule, the maximum speed of the object does not exceed the speed of 

sound. For paths directed at negative angles relatively to horizon, this value is not 

greater than half the speed of sound. Let us note that according to condition (2.47) high 

efficiency of correction can be achieved only for small values of ratio Dlr0. For 

example, for 0,103(£>/r0)
5/3<l we obtain the condition (D/r0)<3.9. 

Similar results computed for the wind speed distributed according Bufton's model 

are presented in Fig. 2.9. This model is described by the following equation 

r 
V(h) =Vg +30exp 

h - 9400" -\2\ (2.48) 
4800 

where Vg is a parameter of the model corresponding to the wind speed near the surface. 

We assumed that Fg=5m/s. More strict condition 

<4 <ife°; = 0.0103(D/r0)
5/3 (2.49) 

was superimposed on the residual phase error. As it can be seen, on some paths error of 

correction exceeds this level even at zero speed of the object. Even under the most 

favorable conditions the maximum speed of the object should not be greater than 50 - 

100 m/s. When directions of the object velocity and wind velocity is opposite the 

limitations are even more strict. 

From the data presented above we can see that possibilities of correction with the 

use of the reflected beam are limited.   Let us consider correction with the use of 
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Rayleigh beacon. In this case it is possible to minimize the error of correction by 

choosing the forestalling parameter rj. Because the most important for us is the case 

when the speed of the object is much greater than wind speed, the optimal value of 

forestalling parameter is close to unity. As it follows from Eq. (2.29), in this case the 

error of correction is entirely defined by wind velocity distribution V(x) and by the lag 

of adaptive system rd and does not depend on the object speed. 

Let us consider the results presented in Figure 2.10 that have been obtained for 

Rayleigh beacon. The graphs show the variance of residual phase aberrations 

normalized on variance in the absence of correction. The lag of adaptive optics system 

was taken equal 0, 1 and 10 msec. 

Zero lag corresponds to maximum efficiency for Rayleigh beacon as well as for 

reflected signal when the speed of the object is zero. We can see that for most paths the 

relative error of phase correction is not greater than 1%. For the taken model of wind 

speed distribution the error almost on an order less when system is placed at 20 km 

height. In Bufton's model the maximum of wind speed (35 m/s) is on 10 km (parameter 

Fgwas taken equal 5 m/s). 

At increase of the lag to 1 msec we obtain the value of residual error equal to a few 

percents, for the lag 10 msec the error increases up to 30 - 60 % at Hs = 10 km and up to 

5 -10 % at Hs = 20 km. Thus, to obtain high enough efficiency of correction the lag 

should be less than 1 msec, and for efficient operation in the entire interval of 

considered paths the lag should be less that 0.1 msec. 

Similar calculations have been made for the low atmosphere paths. The results 

corresponding to correction with error less than 1% are presented in Fig. 2.11, where we 

put the values of maximum object speed computed with zero lag of adaptive system. 

The maximum speed of the object was less than 2 - 3 M approximately for a half of the 

considered examples. When the lag is 0.1 msec the maximum speed of the object is in 
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the interval 0.5 -1.5 M. Thus, on these paths reflected beacon also imposes strict 

conditions on the speed of the object and on the rate of adaptive control. 

Taking forestalling parameter equal to unity let us consider the control with 

Rayleigh beacon. For the beacon of such type the residual error does not depend on the 

speed of the object and are defined entirely by distribution of wind speed and by the lag 

of adaptive system. The computational results of the normalized residual error for the 

lag of 1 msec are presented in Fig. 2.12. It is seen that in the entire interval we have 

obtained the level of residual error less than 1% and the error is almost independent of 

the path length. 

To study the dependence of residual error on the lag of adaptive system let us 

consider the path often kilometers (the same figure). It is seen that increase of the lag 

up to 10 ms results in almost 15% increase of residual error. So the maximum possible 

lag is 1 - 2 ms. 
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FIG. 2.1. Coherence length r0 and normalized aperture diameter Dir0 on different paths. 

Moderate intensity of turbulence, X = 1.315 jum. 
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FIG. 2.2. Results of correction for image aberrations. Strehl ratio vs.  normalized 

aperture diameter for different values of scintillation index. 
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picture corresponds to exact phase conjugation, in the right-hand picture phase 

dislocations have been filtered. 
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FIG.2.4. Scintillation index on different atmospheric paths. Computations have been 

performed in Rytov approximation for spherical wave and moderate intensity of 

atmospheric turbulence. X = 1.315 fjm. 
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FIG.2.5. Greenwood frequency for different paths in the upper atmosphere as function 

of an object velocity. 



65 

100 f(kHz)     Ht=100m 100. f(kHz)    Ht=500m 

0.01 

0.01 
0 2 4 6 8 10 

100 f(kHz)    Ht=10km 

-■—L= 1km 
-m—L = 3km 
-A—L= 5km 
-^—L=10km 
-»— L = 20km 

0.01 



66 

FIG.2.6. Greenwood frequency for different paths in the lower atmosphere as function 

of an object velocity. 
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FIG. 2.9. Maximum velocity of an object on the upper atmosphere paths at adaptive 

correction with the use of reflected signal. Calculations have been performed with the 

use ofBufton 's model of wind, residual error was 1%. 



67 

%% 

Hs = 10 km, Bufton wind ( Vg = 5m/s ) 
delay = 0, D = lm, Reyleigh beacon 
—m—-? —•—2? -^--1° 

4 «_ 

3 . 

2 - 

1  - 

aA % 

10 

[ Hs = 20 km, Bufton wind ( Vg = 5m/s ) 
delay = 0, D = lm, Reyleigh beacon 
—■ f —•—-? —^ 1° 

r—•—+f —+— +2 —K— +y. 

0.1 

0.01 
100 

%% 

10 

Hs = 10 km, Button wind ( Vg = 5m/s ) 
delay = 1ms, D = lm, Reyleigh beacon 
_■—y —•—-? ^*^-i° —^- ö1 

"—•—+? —.—+2° —x—+y 

4 - 

2 - 

100 200 300 400 'L(im) 

a. % 
A<p 

10 - 

0.1 

Hs = 20 km, Button wind ( Vg = 5m/s ) 
delay = 1ms, D = lm, Reyleigh beacon 
—■—f —•— -2 —ä.—1° —r— # 
—♦—+f —t— +2> —*—+y 

100 200 300        400 *rfej 

%% 

70 

60 

Hs = 10 km, Button wind ( Vg = 5m/s ) 
delay = 10ms, D = lm, Reyleigh beacon 
_■—f —•_-? —ä.—1° -^f— <s 
■—»-+f —H-+? —*^+y 

50 - 

40 . 

30 . 

20 J L 

a. % Acp 

100 

10 

Hs = 20 km, Button wind ( Vg = 5m/s ) 
delay = 10ms, D = lm, Reyleigh beacon 

■—. y —•—-2° -^,—1° —r- Ö" 
—♦—+r _,_ +? -x-+y 

100   200   300   400 L(Ktn)       100 " 200 " 300   400 L(km) 



68 

FIG. 2.10. Normalized residual phase error at correction with a Rayleigh beacon. 

Temporal lag of the system was 0, 1, and 10 msec. 
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FIG.2.12. Residual error vs. path length for lag 1 msec (right-hand picture) and 

residual error vs. temporal lag for 10 km path (left-hand picture). In both cases 

Rayleigh beacon was taken as a reference source. 
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ABSTRACT 

We have pointed out that such two terms as «an effective scattering volume» and «a 

laser guide star» (LGS) are scientific synonyms. The first term had been introduced 

earlier by specialists in atmospheric optics and laser sounding. In the report we have also 

represented information concerning fluctuations of waves reflected from an object and 

waves passed twice atmospheric inhomogeneities. Corresponding mathematical 

apparatus allows one to estimate correlation characteristics of a LGS. We have 

considered the mutual correlation function of random angular displacements of a plane 

wave image and the centroid displacements of a focused Gaussian laser beam. The 

algorithm of «optimal» correction was introduced in which a priory information is 

employed. Basing on this algorithm the variance was evaluated of residual jitters of a 

star image obtained with the use of LGS. 

Key words:  turbulence,  double passage  fluctuations,  laser guide star, tip-tilt 

correction efficiency. 



Chapter 1. Monostatic and bistatical schemes and optimal algorithm for tilt 

correction in ground-based adaptive telescopes 

1.1. Introduction 

One of the most promising trends in the modern astronomy is a creation of ground-based 

adaptive telescopes which employ a signal of a laser guide star (LGS) [1]. To our mind, 

the most complete literature revue of the modern state of LGS was made by R.Ragazzoni 

[2]. 

The importance of investigations into the efficiency of adaptive optics systems with 

an artificial reference source was understood in the end of seventies. In this period were 

formulated the main principles upon which the modern concept of adaptive systems is 

based. According to this concept the reference source is the element with the use of 

which the information is procured concerning the distribution of fluctuations in the 

channel of radiation propagation. The way in which this channel is formed influences 

the structure of the whole system. If the principle of reciprocity is the base for an 

adaptive system, the most appropriate scheme is the one with an independent source of 

radiation generating a beam propagating in direction opposite to the corrected beam 

[3,4]. 

Aiming at the practical realization of the system, the atmosphere should be 

included into the loop, i.e., the backward scattering should be taken into account with 

radiation reflected by an object or by inhomogeneities of the atmosphere. In such a way 

an artificial (virtual) reference source is formed. In the early eighties in adaptive 

astronomy artificial reference sources were named teer guide stars. There are two main 

schemes of LGS generation: monostatic and bistatic [1, 2]. The laser used for this 

purposes is ground-based so the optical radiation travels two times through atmospheric 

inhomogeneties. First, upward, to form the LGS itself.  Second, downward, in result of 



backscattering (secondary emission, or elastic aerosol scattering) by atmospheric 

inhomogeneities. In monostatic scheme it is assumed that correlation of fluctuations for 

the upward and downward propagation (for direct and secondary beams) are maximum. 

Quite different conditions are characteristic for the bistatic scheme (in some papers the 

term "bistatic" means the LGS scheme formation, where there is no correlation between 

upward and downward propagation). In the both schemes one need to take into account 

peculiarities of optical parameters fluctuations of radiation passed twice through 

atmosphere. 



1.2. The peculiarities for double-passage optical wave fluctuations 

Approximately in begining of seventies scientists working with optical systems of seeing 

and beam forming in the atmosphere and also with sounding systems understood that the 

peculiarities of fluctuations of reflected waves should be allowed for. In 

contradistinction to transmitting systems, in the systems of optical sounding the effect of 

two-fold passing of the atmosphere is always present. Sounding radiation passes through 

the same optical inhomogeneities two times: during the direct and reverse propagation. 

Scientists involved in investigations connected with atmospheric sounding introduces 

such terms as effective scattering volume, monostatic optical scheme, bistatic scheme of 

laser sounding and some others. 

The LGS is aimed at providing a reference source bright enough for adaptive optics. 

This concept recently begun to be widely discussed, but in fact it is not so new. We 

would like to declare that two scientific terms: effective scattering volume and laser 

guide star are scientific synonymes. The first term had been introduced earlier by 

specialists in atmospheric optics and laser sounding. The second term - laser guide star - 

had been introduced in astronomy for application with adaptive optical image correction. 

In this connection the great benefit for the tasks of adaptive optics for astronomy 

possible to obtain with application earlier theoretical investigations which have been 

developed in the atmospheric optics and laser sounding. In the next part of this chapter 

we are going to present some results and formulae concerning fluctuations of waves 

reflected from an object and waves passed twice atmospheric inhomogeneities. In 

particular, the corresponding mathematical apparatus allows one to estimatecorrelation 

characteristics of a LGS. 

The following Russian scientists were working in the field: Yu.A.Kravtsov, 

A.N.Malakhov, A.S.Gurvich, K.S.Gochelashvily, V.I.Shishov, A.I.Saichev, 

V.A.Banach,   V.L.Mironov,   V.U.Zavorotny,   V.I.Klyatskin,   A.I.Kon,   V.LTatarskii, 



Yu.N.Barabanenkov, S.S.Kashkarov, G.Ya.Patrushev, V.P.Aksenov. M.I.Charnotskii, 

M.L.Belov, I.G.Yakushkin, Z.I.Feizulin, A.G.Vinogradov, A.B.Krupnik, L.Apresyan. 

The most complete overview of the problem and Russian papers in the field were 

presented on the International Meeting for Wave Propagation in Random Media 

«Scintillation» held in USA (Seattle, August 1992) [5]. This paper presents the review 

of the results of the effect of atmospheric refractive index fluctuations on the propagation 

of optical wave when the wave traverses the same region of the atmosphere twice. Such 

situation is realized at reflection of laser beams from a target or at wave backscattering 

on atmospheric aerosol. In the case light-wave propagation properties are determined by 

correlations between incident and wave traversing the same inhomogeneities in a 

turbulent atmosphere. 

Fluctuations of an image center of gravity of backscattering volume were considered in 

the book by M.L.Belov at al. (Ref.[6]). The image was formed through an 

inhomogeneous medium in a sounding system with the use of a focused laser beam. 

Particularly, fluctuations were investigated of the image displacements of a sounding 

volume. Monostatic and bistatic schemes were considered. For irradiation of the volume 

focused and collimated laser beams were used. Equations describing the variance of 

centroid fluctuations were obtained for an image in the photodetector plane without any 

restrictions on reflection properties of an object (pp.84 - 95 of Ref. 6). It was shown that 

for the case of strong dispersion on a reflection surface (Lambertian approximation) in 

the bistatic sounding scheme the variance of linear displacements of the image center of 

gravity pim can be written as (see page 92 of Ref.6): 

<^>=^<^>+F2<(^)2>, (1) 



where < pfb > is the variance of random displacements of the beam centroid in a 

sounding plane (it was assumed that the beam propagates forward) and < (pp) > is 

the variance of random angular displacements of an image of «secondary» motionless 

source (backward propagation). So, it was shown that for the bistatic scheme the 

variance of angular displacements of an image is a sum of angular displacements of the 

image and of the «secondary» motionless source. If a focused beam is used in strongly 

scattering medium the "secondary" source is, practically, a point source. 

In this period calculations were performed for cases when the source can be treated 

as a point and also for objects with finite volumes. As an example the paper by 

M.A.Kalistratova and A.I.Kon (Ref.7) can be taken where jitter of image was considered 

for a thin irradiating string. 

So we can conclude that in the USSR in early eighties scientists understood that in 

some conditions a volume could be considered as infinite small (a point source) and that 

in other problems its size should be allowed for, i.e., if an object is large enough 

averaging over its volume is necessary as it was performed in Refs.7, 16. At the same 

time the authors of Ref. 6 were not able to calculate correctly mutual correlation between 

fluctuations of focused beam displacements and displacements ofa image of reference 

sources. It was performed in 1979-1980 (see Refs. 8, 9 ). 



1.3. Correlation between instantaneous tilt for transmitted beam and reference 

image 

In 1979-1980 V.P.Lukin was considering [8,9] the problem of stabilization direction for 

laser beam in turbulent atmosphere. As a method to solve this problem, the detection of 

an image of a reference source (including the natural star) in a focal plane of a telescope 

was proposed. In particular, a mutual correlation function < plbpF > for a vector 

characterizing random shifts of the beam centroid/?/ö and vector defining coordinates of 

image centroid of a reference signal pF was computed for a turbulent atmosphere. It 

was assumed that as a reference signal an image of some beacon (in focal plane of 

telescope) can be used. 

In Ref. 8 have been calculated the mutual correlation between the random 

displacements of the center of gravity of Gaussian beam and the center of gravity of 

some image for infinite plane wave.   The beam and plane wave propagate along the 

same optical path. Random displacements of the beam centroid are given by the vector 

[10]: 

\ „   . (2) 
plb = 1- \d{(X - fl Jjd2R/ (I R)VRn1(£ R), 

»   n   r\ 0   0 

P0 = JJd2/?/(0,R), 

where n^ (£, R) denoted the fluctuations of the atmospheric refractive index in the point 

(£,R), 7(4,R) is the optical field intensity at the point (5,R) from the laser source placed 

at the coordinate origin in the initial plane (for 4 = 0); Xis the thickness of the turbulent 

layer. 
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The random displacements of the any image in the focal plane of the optical 

system (telescope, or equivalent to a "thin" lens with focal lengthF and area 2 = TCR0
2
 ) 

are given by the expression [11]: 

fc=-£jJv,s(x,P)dV, 

where k is the wave number of the radiation, S(x, p) are the fluctuations of the phase of 

the optical wave over the aperture of the optical system (in the £ = X plane) at the 

point p. The mutual correlation of the random vectors pjb and pF is given [8,9] by 

Here and in any places in this report <...> denotes averaging over the ensemble of 

realizations of the random function /T, (£ R) [11, 10].  In that follows we assume that 

functions (/ (£ R)) and On(^,K)  are isotropic and average intensity (/ (£ R)) is 

given for Gaussian laser beam in representation [10,11]: 

/(£■*)) = 
fli«) 

exp(-R2/a2,(<f)), 
(5) 

where 

a2AZ) = * 1-^-£    +Q-2+Q-2 M,Ds(2a) 
f    J \2. 

6/5 

Q = 
Ka2^ 
X{ 

,   a   and    f are initial parameters of the Gaussian beam, Ds (2a) is a phase 

structure function [10]. All in all we obtain [8] 
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K = Jcf£(1 - $jdKKz®n(K)exp 
(   K\Rl+a\^ („i 

cos 
2K 

X 
(6) 

X 

X 

\d^-$2\dKK3®n(ic)exp 
f .2^2 ^(S ^ 

-1/2 

Jof^Jc(A:A:3On(A:) exp 
f 2o2\> 

K*RS) cos2 

2/r 

-1/2 

In calculations we use the following spectrum 

9„(IK) = 0.033C„2(D(^2 + ar2)""'6, (7) 

which accounts for deviation from a power series in a vicinity of the outer scale 

L0 = 27TKÖ , C„(£) is a structure parameter of turbulent atmosphere. Estimation [8] is 

performed for a homogeneous path (initial beam diameter equal to the diameter of the 

input pupil of the telescope), the parameters of the problem are the following: 

n 6/5 

/r-1»(R0,  a^,  f/k);   kR*»x,  Q-2[-Ds(2a)j     «1. 

V.P.Lukin obtained for focused beam ( f = X) the value of K= 0.84. 

Thus, the high positive correlation was shown (in Ref.8, 1979) between 

displacements of a Gaussian beam and displacements of the plane wave image centroid 

assuming that beam propagation and image forming are on the same path and in the 

same direction. Later in [9] these results were generalized for the case of beam and 

image forming when propagation is realized in opposite directions. It was also assumed 

that forming of the image in the focal plane of a telescope performed for the following 

scenarios: 

• plane wave, spherical wave, Gaussian beam, 

• radiation reflected from a plane mirror. 
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For a plane wave propagating over a homogeneous path and for a broad beam it 

was obtained that 

• K = - 0.87 (for collimated beam), K = - 0.82 (for focused beam). 

For spherical waves and any others reference beacons the results could be obtained 

from the formulas presented in Ref. 9. So as early as in 1979-1980 the sign of mutual 

correlation was determined and its value estimated. 
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1.4. Correction of beam direction with image of reference beacon 

Due to relatively high correlation, an algorithm of control for correction of random 

angular displacements of beam plb/X  can be performed, according to the formula 

a(a I 2R0)
1/3pF/F, where a is coefficient of the loop which chosen to ensure the 

minimum of residual angular displacements of the beam 

mm'   ■'" u 
-1/3,   \2 

So, passing from linear measurements to angular it is possible to control a laser beam 

position using data of measurements of the reference source image. In Ref.9 (1980) 

Dr.V.P.Lukin have made mention of the fundamental possibility of using radiation 

backscattered by the atmospheric aerosol. And he firstly presented scheme for laser 

guide star formation (Fig.1.1). 

Summing up we can conclude that Soviet scientists in eighties obtained all functions 

necessary to analyze random displacements of the image of a sounding object for bistatic 

as well as for monostatic schemes. 

But in any cases under to solve some principal problem, the question about the 

model of scatering or refrecting media still is always arise. The solution of this problem 

have been determined the model of "secondary" source. Possible as to interaction of 

model of similar source, as a solution of problem for backscattering. 
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1.5. Investigation of LGS motion and full aperture angle correction 

The two techniques for measuring with a LGS is proposed in [12]. The first technique 

exploits a laser beam transmitting through the main telescope and two auxiliary 

telescope, which are separated from the transmitter, are used to measure a LGS image 

motion, averaging over its angular extent. In his paper [12] author mentioned that 

monostatic LGS can not be used for tip-tilt correction for main telescope, but bistatic 

scheme (without correlation between upward and downward propagation) permits to 

single out the tilt component corresponding to the transmitting beam which is highly 

correlated with the tilt for natural star. Unfortunately, author of [12] did not made 

adequately references [8, 9] and several formulas in this paper are with strong errors. 

The new approach [13] same author exploits a small beam transmitted from main 

telescope, and signal for tilt correction is determined by substracting the LGS motion 

measured simultaneously with the main and auxiliary telescopes. There are not nesessary 

references [6-9, 16] in paper [13] too. 
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1.6. Correlation between natural star angle motion and auxiliary laser beam for 

bistatic scheme of LGS 

Following the R.Ragazzoni approach [2], let us consider as in [14, 15] the next scheme 

for LGS forming (Fig. 1.2). LGS created with auxiliary laser beam with separate 

aperture. Parameters of the problem are as follows: RQ is a telescope aperture radius,Xis 

an altitude of (distance from) a LGS, input pupil of the telescope is placed in the plane 

£ = 0, a is radius of transmitting aperture for laser source, p0 is a vector of 

displacement of the laser source relatively to the telescope optical axis. We presume that 

the tip-tilt measurements of the wave front is performed in the telescope with the use of a 

LGS formed at an altitude X above the input aperture exactly at the optical axis of the 

telescope. The telescope is pointed at the zenith and a weak natural star and the LGS are 

both at the telescope axis (or within the isoplanatic area out of axis). The zenith angle of 

the laser beam is pQ\ I X (in the assumption that pQ\ « X). 

Let us also assume that the observed star (as a science object) has a plane wave 

front. The vector characterizing a random tilt of this wave front due to atmospheric 

turbulence is (see Ref. [11]) given Eq.(3), where 

00 

S"(0,p) = k \di;\\d2n(K, x - $) exp(ixp) (8) 
0 

are phase fluctuations for a plane wave on the telescope aperture, and the following 

spectral expansion [9,10] is used for fluctuations of the atmospheric index of refraction 

n, (£ p) = \\d2n(fc, x-g) exp(itcp). 

In the last equation it is also taken into account that the wave from natural star travels 

from infinity to down. Random angular shifts of the centroid for LGS formed with a 

laser source at the altitude Xcan be written [16] using Eq.(2) with 

/ =/(£/* + A,(W/X). (9) 
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The fact is taken into account that the laser beam (see Fig. 1.2.) is shifted by the vector 

p0 and its optical axis is also tilted at the angle p0 I X. 

Let us to obtain a mutual correlation function between random angular shifts of 

the image of a natural star (function <pf, Eqs.(3), (8)) formed by the telescope and shifts 

of the centroid of a focused beam formed by tilted laser system (function <plb(p0), 

Eqs.(2), (9)). We are going to based only on results of such computations, which 

were published in Dr.V.P.Lukin's papers (Refs.8, 9, 14, 15). Deviation of the 

turbulence spectrum from a power function in the domain of large scales was accounted 

for [17-20]: 

Ön(K, Ö = 0,033Cn
2(£k-11/3{1 - exp(-A:2 / 4)}, (10) 

where C2(£) is turbulence intensity on the path of propagation and/rö (£) is the outer 

scale of turbulence. If these properties are correctly allowed for, it is possible to obtain 

[8, 9, 14, 15] the following equation for a correlation function: 

(&,(&)#) = (-2;r20,03aÄ(-b)21/3Rö1'3 jd#C*(fl(1 - <f / X) 
0 0 

Here the designations were used: b = a I RQ,   d = \p0\/ R0,   C = K^RQ   and the 

1F1 (...) is a confluent Gaussian hypergeometric function. 

It can readily be shown that the second term in the braces is related with the outer 

scale of turbulence. And if the outer scale approaches infinity, this term can be omitted 

so the correlation function takes the form: 
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&,(&)#) = (-2*20,0334(1))21,3R0-1'3 |d|C2(£)(1 - #/ X) x 
0 0 

i + *>2n   ^/x)2^1/6F^1-   <*2(W/*)2   ) (i2) i + ö(i   #/x)j    1p1(6,iI (1 + ö2(1_^/x)2)) •   vv 

Into this equations (11), (12) the value of d = 0 corresponds to the monostatic scheme 

of a LGS. For the bistatic scheme (for d > 0) condition of » 1 correspond to 

asymptotic of a hypergeometric function 1F1 (...)• Thus, 

*4))21'3/^1'^-,(|)-,'s 
b D 

A,(A>)«F") = (-2^0,033/i(^))21'3Rö1'^-1(>- - x 

j^C„2(D(1-#/X)2'3 , (13) 
0 

from the analysis of the last equation it is possible to conclude that correlation between 

the plane wave and the beam decrease down to 0.1 for d >103.    This value is 

characteristic for the bistatic scheme (where there is no any correlation for upward and 

downward propagation) for infinite outer scale of turbulence. 

Numerous data obtained experimentally (Refs.21-24) justify the assumption that 

the outer scale K^{%) is a finite number.   Moreover, in result numerical estimations 

performed with the use of different altitude profiles of C2(£) and KQ\%) scientists 

comes to the conclusion that it is possible to introduce some characteristics {spatial 

coherence outer scale [25], or effective outer scale of turbulence [26]) for the whole 

atmospheric column description. As it was turned out, under «moderate» conditions of 

seeing [27], the value of this effective outer scale is 5 - 60 meters [26].   So for a 

telescope with RQ=4M parameter C = rc0 RQ <10. 
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Let us perform asymptotic analysis of the outer scale influence on the correlation 

function expressed by Eq.(l 1). As an argument of the function we take a variable^/ and 

as parameters variables b, c, andX Simple estimations show that when parameterd = 0 

and c < 5, the correlation with the finite outer scale is two-three times lower than with 

the infinite outer scale. With increase of d (for d > 1) correlation computed by Eq.(l 1) is 

not greater that 0.2. For d > 2c the correlation is 17 times lower than that for the infinite 

outer scale.   And, at last, for d» c the sign of correlation function < plb{d)0£' > 

changes for reverse and dependence on d can approximately be written as« d~ 

To confirm this conclusion let us estimate numerically a correlation coefficient 

K(Q,c,X)=   ,      <^°)^> , (14) 

The coefficient can be expressed through correlation function (11) and corresponding 

variances: 

{(p?)2) = (2^2a033^(l))21/6R0-1/3)cy^Cn
2^)[1 - [1 + 4c2]"1/6],       (15) 

o 

((fe(A)2) = (2^20,033>A(J))21/6R0-1/3 jd{Cfä) x 
05. (16) 

{(/)2(i-^/x)2r1/6-(ib2(i-^/x)2+4c2ri/6} 

Computations were performed with a model of C2(£) corresponding to «moderate» 

conditions of seeing [27]. The altitudes corresponding to Rayleigh and sodium artificial 

stars (10 and 100km) were included into initial conditions. Parameterb was chosen as 

follows: b = 0.1, 0.3, 0.7, 1.0, 3.0, and 5.0. The values of b greater than unity are typical 

in situations, when a big telescope forms an artificial star for a small one. Such ratios of 

parameters can be realized in observatories where telescopes of different sizes are 

placed.   For example, when in Mauna Kea observatory the ten-meter Keck telescope 
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used as auxiliary one for a small telescope. In the calculations values ofc were the 

following: 1, 3, 5, 10, 100, 1000. The case when c = 1000 practically corresponds to the 

infinite outer scale. 

The results obtained are shown (with omiting a sign) in Figs. 1.3 and 1.4 as a 

fragments a, b, c, d, e, f. All need parameters are shown on Figures. It should be noted 

that the results obtained numerically confirm the conclusions of the above analytic 

analysis. Also possible to made the next conclusions: 

1. With the large outer scales (c =100 and 1000) the scheme for the LGS formation can 

be considered as bistatic (upward and downward paths are decorrelated) one, if the 

difference between axis of the telescope and auxiliary laser beam is(200 - 1000)R0, i.e., 

iftf>200. 

2. With a finite outer scale (c < 5) the value of differences d in two or three outer scale 

times means substitution of the monostatic scheme to bistatic one (where correlation 

upward and downward propagation is negligible). 

3. Smaller values for differences d correspond to intermediate schemes (with partial 

correlation for upward and downward paths). 

4. It should also be noted that the results of our calculations are notcoincide with results 

reported in (Refs.13 and 29). These authors considered mutual correlation functions for 

two plane waves traveling from infinity with different tilts.    In particular, in our 

computations the correlation coefficients for d = 0 is not equal to unit (with the sign 

minus). Only with decrease of X, the coefficient K approaches unity asymptotically. 

5. It is interesting to consider the behavior ofX" in the region of small values ofc (c = 1, 

3, 5) and relatively large values of b {b =3, 5). This situation is characteristic for the case 

when a large telescope generates an artificial star for a small one. The results obtained 

(Fig. 1.3 and 1.4) show that in this scheme the correlation in the regiond<c is 

practically constant (correlation is equal, correspondingly, to 0.4, 0.5, 0.7). 
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6. With increasing of c the characteristic scale of correlation function^ increases, i.e., 

the correlation radius increases. This effect was noted (for two plane waves) in [13]. 

7. Increasing of the correlation radius is not infinite, gradual saturation of the function 

was observed in our numeric experiments.   For small values of c (the outer scale is 

small) correlation function K(d) decreases down to 0.1 for d = c. But even for c = 100 

the correlation falls down to 0.1 if d = c/2. When c = 1000 such fall occurs ford = c/10. 

This is possible for altitude X=10km as well as for X= 100km. 

8. The predicted change of the sign for correlation function made on the basis of the 

asymptotic analysis (the conclusion was made comparing Eqs.(ll) and (12)) is due to a 

finite size of the outer scale of turbulence. When the outer scale is small (c = 1, 2, 3) and 

d>(2- 3)c, the correlation function change its sign to opposite. For largec this effect is 

impossible to register. When values of the outer scale are large, coefficients (Eq.(14)) 

keeps its sign. 

Really, it is interesting to find a relationship between the value of radius of mutual 

correlation for two plane waves [29, 13] and radius of correlation for a plane wave and a 

slanted laser beam (the last characteristic is presented in Figs. 1.3 and 1.4). If found, 

these data would allow one to use the results of direct astronomical observations of 

images of two stars seen at different angles in prognoses about the value of correlation 

(for tip-tilt correction) for a system «telescope-LGS» and also to make more correct 

conclusions concerning the mode of operation of this system. To our regret, it is 

impossible to make a simple comparison between Figs. 1.3 and 1.4 and the data presented 

in Ref. 13 because in algorithms of computations different models of the atmospheric 

turbulence were used. 

Actually, based on these Figs. 1.3, 1.4 (and formulas (11), (12)), it is possible to 

estimate the real level of correlation between natural star motion, measured in the 

telescope and auxiliary tilted laser beam, which formed the LGS on optical axis of 
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telescope, and to obtain parameters for calculation the efficiency of tip-tilt correction 

with any interested parameters of telescope, size of laser beam, outer scale of turbulence 

and distance between telescope and laser beam axises. 

The calculations of the real level of correlation between natural star motion, 

measured in the telescope and auxiliary tilted laser beam, which formed theLGS are 

carried out using the model of the spectrum of atmospheric turbulence. The structure 

parameter and outer scale of turbulence are the parameters of the model. Thus we shall 

study the peculiarities of the correlation connected with the finite value of outer scale of 

turbulence. Moreover, since all these value depend not only on the propagation path but 

also on the actual altitude of telescope above the sea level, the possible variations of the 

model should be serionsly discussed in this aspect (model parameters) depending on the 

aerography of the underlying surface. We are repeating that numerous data obtained 

experimentally (Refs.21-24) justify the assumption that the outer scaleA:ö1(£) is a finite 

number. Moreover, in result numerical estimations performed with the use of different 

altitude profiles of C„ (£) and K^{%) scientists comes to the conclusion that it is 

possible to introduce some characteristics {spatial coherence outer scale [25], or 

effective outer scale of turbulence [26]) for the whole atmospheric column description. 

At the same time the models of the atmospheric turbulence spectrum, taking into 

account the fmiteness of the outer scale of turbulence, and especially, the running value 

of this parameter K^{^) for vertical paths are rarely used. For homogeneous surface 

paths it is shown that value K^ 
1 is fully finite and commenssurable with the height above 

the underlying surface. At the same time, for astromonical observations a number of 

researchers consider this value KQ 
1 to be equal to hundreds of meters up to some 

kilometers. There are many observations when the results correspond to the value of the 

outer scale of the order of one meter. 
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Undoubtedly, the outer scale of the turbulence significant variations both in the 

surface atmospheric layer and at large altitudes. Therefore we cannot speak about the 

value of the outer scale as having the definite value for the entire atmosphere. We 

propose to consider a number of possible versions of variations of the outer scale with 

altitude h: 

KQ\h) = 0Ah, (A) 

(B) 

(C) 

(D) 

(E) 

_1 J 0.4/7   h<25m 
K° {h)=\24h,   h>25m' 

^W = 
0.4/7, h < 25m 
24h,    25m<h< 2000m 

89,4m,        h > 2000m 

*?(*>) = T 

Ko1(1) = f 

1 + ((/7 - 7500) / 2000)' 

5 

1 + ((/7 - 7500) / 2000)2 

Model (A) is recommended in [11] for the use for small altitudes, model (B) is proposed 

by D.Fried [17], model (C) represents the generalization of the first two models. Model 

(D) and (E) are obtained as a generalization of the results of direct measurements in 

USA, in France, and in Chili [17, 32-34]. The resembling value ofthis parameters were 

obtained for the Mauna Kea Observatory (Hawaii) [17, 34]. Some investigators have 

cast doubt on these models [17, 21], however, the altitude variations of the value of outer 

scale within wide limits have gained recognition. 

Figs. 1.5, 1.6 present result of calculations of the same characteristics as on 

Figs. 1.3, 1.4 only we apply here the outer scale as models (A, B, C, D, E) instead the 

different values for outer scale on Figs. 1.3, 1.4. The curves on Fig. 1.3 and Fig. 1.5 (as 

Fig. 1.4 and Fig. 1.6) are very similar, but only for models D and E the correlation 
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functions became having the lower level of correlation for small difference between 

main telescope and laser beams axis. 
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1.7. «Optimal» algorithm of tip-tilt correction of natural star 

A laser guide star allows one to expand the domain of stable operation for an adaptive 

optics system. The star is formed at some finite distance, so the problem arouses to 

correct the data of optical measurements performed with a guide star to ensure efficient 

compensation for aberrations of a image of a real astronomical object [4, 1]. This 

correction of data is possible with the use of atmospheric models [28, 14,15]. The 

models of atmospheric turbulence allow one 

■ to estimate the level of turbulent aberrations above the reference star, i.e., to compute 

optimal altitude of the star generation, 

■ to compensate partially focal anisoplanarity in a system with a reference star placed at 

a finite altitude, 

■ to make estimations of efficiency for a «tip-tilt» correction more precise. 

Doubtless, when we use the LGS formed in the atmosphere by backscattered 

signal in the algorithm of correction for random wandering [1, 2, 12, 13, 14, 15] of a 

natural star image, the problem arouses of data processing optimization.  Let us try to 

construct the algorithm of angular natural star image motion 0j? correction, using data 

of LGS angular position measurements (pm , as following [14, 15]: 

0? ~ A0m . (17) 

This algorithm ensures the minimum of the variance for residual angular displacements 

for natural star under tip-tilt correction based on data for LGS angular position 

measurements: 

k2\        //_nf\2\ ;?//-   \2y (?)=({?? - Apmf) = (s?n+^ w> - 2%"«u-     (ig) 
From Eq.(18) we obtain as a minimum: 

n*-(#)!-(#*.) i (itf). <*> 
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when the coefficient of correlation A is expressed through a (nonrandom) determined 

functions as 

A=<^9m>l <vl>- (2°) 
The form of this coefficient allows one to conclude that the coefficient^ can be 

calculated from data in direct optical experiments (some time before adaptive telescope 

operation). Unfortunately, in other side, a most real experiment we can obtain only data 

on (j)m , because vector cpp  characterizing angular wandering of a natural star image is 

impossible to detect due to insufficient intensity of light from a natural star.  In similar 

cases we can estimate this coefficients by formula (20), using [15] the models of 

atmospheric turbulence and results for calculations the correlation function (11) and the 

variances (15), (16). 

It should also be noted that the minimum of variance (19) is impossible to obtain 

with traditionally used correction algorithms (Eq.(18) withS = -1). To confirm this let 

us perform intercomparison of residual variance for optimal and nonoptimal (traditional) 

algorithms of correction. In our designations the minimum variance of residual 

fluctuations of a star image angular shifts in a scheme presented in Fig. 1.2 can be 

estimated as: 

2V3f(X,b,d,C2„) . 
</?2>min=<(^)2>{1-f 

1+f*-2-(l + ^',1F1(l.1^^) 

(18) 

where the function 
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f(x,b,d,c2„) = (J^c„2(D(i si X){[1 + (1 - <f / X)2]-1'6 - 
0 

-[i+ö2(w/ ^r^^^f^-^xV*2 x     (i9) 

[(}^c2(fl(i-f/x)5'3jd#c2(3r1 

0 0 

depends upon parameters of the optical experiment as well as upon the used atmospheric 

model (the above equations are written assuming that the outer scale of turbulence is 

infinite, and for assumption that LGS is a point source). For traditional algorithm (A= -1 

in (17)) the residual variance for natural star motion is determined by the formula (18). 

Numerical analysis of these equations showed [14, 15] that in result of optimal 

correction the residual angular distortions can be less than residual distortions of 

traditional methods of control. To illustrate advantages of the optimal algorithm in 

comparison with nonoptimal (traditional) one we include in the paper Table 1.1 where 

the values of residual angular distortions are presented for a telescope with a bistatic 

reference star. In the Table we put the values of normalized (to the variance of angular 

natural star motion without tilt correction) residual variances 

(/) / ((<p?f) = 1 + A^mf) I ((^)2) - 2Altf9m) I ((#-)*)     (20) 

for optimal and traditional algorithms for natural star tip-tilt correction. In the fifth 

column also placed the values of correction coefficient^ computed for the model of 

turbulence [27]. We have presented results for different sizes for auxiliary laser beam 

(parameter b=03, 0.5, 0.7,1, 2, 3, 5) and altitudes of LGS (X= 8km, 20km, 40km, 80km, 

and 100km), the model of turbulence atmosphere have been taken from [27], parameter 

<£>5000. 
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It is seen from the data presented in the Table that optimal correction with 

properly chosen coefficient^ allows one to decrease the residual distortions. So the 

conclusion can be drawn about efficiency of optimal correction with the use of 

information concerning altitude profiles of turbulence. At the same time intensity of 

distortions can even increase in the result of nonoptimal (traditional) correction in 

bistatic scheme (for parameter d>5000, i.e., and for the negligible level of correlation 

between beam and image of natural star motion), as can to see from Figs.l.3f, 1.4f. But 

even with the considerable reduction of tilt jitter using the proper choice for^ still a 

relatively large amount of tilt residual affect the image of natural star. Must to say that 

this conclusion is based on assumption that LGS image is a point. 
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1.8. LGS as extended source 

But in some bistatic scheme a LGS image has the form of an extended source [2, 12, 13]. 

As a consequence, the random displacements for motionless "secondary" source might 

be averaged out over its angular extent [2, 12,13]. This problem have been considered 

early in Refs.6, 7, 16 for strong reflection surface and sources as a thin irradiating string 

and extended Gaussian beams. 

But we would like to make an emphasis the difference and similarity between two 

bistatic schemes. Approach R.Ragazzoni [2] - two auxiliary tilted laser beams and 

single telescope and approach from papers [12, 13] - main telescope with laser beam 

and two auxiliary tilted telescopes. In the both schemes the variance for random 

displacement of LGS image are given Eq.(l). If the LGS observing extent ab » R0 

(aperture size for main telescope, or aperture size of auxiliary telescopes) the variance 

[7, 16, 13] for "secondary" source is given: 

Jd«CB
2(fl(1-^/X)2«/X)-1/s 

< cpl >=< (9?f > (a» / Ro)"1'3 JL-x •     PD 
jd#CB

2(0(W/X)"8 

0 

On the next step let us to compare the minimal variances for residual level of natural star 

motion after tip-tilt correction for these two schemes with optimal correction algorithm 

(17). For scheme from [2] the minimum of variance is presented as following formula: 

v2\ .        /    „,       \2 //  _nl\2] 

K - A?J2) I ((tff) = 1 - (fc**.)   / [((fr") )((«U2)], (22) 

and for scheme from [12,13]: 

K - A0mf) I ((^)2) = 1 - (fe^)2 / [((^)2)((0J2)1 ■ (23) 

Last equation may to transfer into next one: 
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[fc* - AvJ2) I ((^ f) = 1 - K 2(0) / [1 + ^||], (24) 

where coefficient of correlation^ is given in (14) for parameter d = 0 and presented on 

Figs. 1.3. -1.5. The second term from Eq.(23) is normalized correlation function between 

angular image displacements of plane wave and "secondary" source - a broad wave 

beam, having size of isoplanation zone in plane of LGS, and in result of calculation 

formula (22) turn into next: 

(jtf!C„2(D(1-<f/X)3/2(#/X)-1/6)2 

K - ^S) I (K)2) = 1 " (2Ö)1'3 -^ =  
Jc^c2(D(W/x)5,3jd|e2(0 
0 0 

(25) 

Second terms in Eqs.(24), (25) are similar and, hence, it is possible to obtain 

approximately the equal level of correction under these approaches [2, 12, 13]. Using 

the models of turbulent atmosphere [17, 18, 27] and appling the formulae (24), (25) from 

this report, possible to estimate the level of minimum of residual tip-tilt distortions with 

different LGS schemes. 

One remark. In scheme [12,13] need two additional auxiliary telescopes to measure 

LGS image motion with accuracy 0.05". Hence, the approach from [2] is cheaper, due to 

usage only single large-scale telescope and two small-scale laser beam directors, but in 

second approach [12,13] need to use main large-scale telescope with laser beam setup 

and two auxiliary telescopes. 

As it seems, that the most promising method of correction for general tilts of a 

wave front is employment of LGS adaptive optics systems with hybrid schemes and 

algorithms for tip-tilt correction [13, 30, 31]. 
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Fig. 1.1. Laser guide star schemes formation. 
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Fig. 1.2. First approach for laser guide star formation through the atmosphere (1980). The 

elements of optical train are laser, adaptive mirror with main telescope mirror, additional 

lens, wave front sensor - optical measurer, electric multiplyer for adaptive mirror control, 

photodetector. 
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Fig. 1.3. Correlation functions AT from Eq.(1.14) for different sizes of outer scale of 

turbulence (parameter c), laser system aperture sizes (parameter b), and beacon altitude 

X=10 km 
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Fig. 1.4. Correlation functions^ from Eq.(1.14) for different sizes of outer scale of 

turbulence (parameter c), laser system aperture sizes (parameter b), and beacon altitude 

X=100km. 
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Fig. 1,X=10km 

Fig. 1.5. Correlation functionsK from Eq.(1.14) for different models (models A, B, C, D, 

E) of outer scale of turbulence, laser system aperture sizes (parameter b), and beacon 

altitude X= 10 km. 
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Fig. 1.6. Correlation functions^ from Eq.(1.14) for different models (models A, B, C, D, 

E) of outer scale of turbulence, laser system aperture sizes (parameter b), and beacon 

altitude X= 100 km. 
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Table 1.1. Comparison of efficiency "optimal" and "traditional" algorithms of tilt 

correction for bistatical scheme. 

X,km b 
Residual level of aberrations 

A Optimal 
Algorithm 

Traditional 
Algorithm 

8 0.3 0.640 1.291 -0.43 

0.5 0.603 1.105 -0.47 

0.7 0.578 0.999 -0.50 

1 0.552 0.899 -0.53 

2 0.500 0.736 -0.59 

3 0.471 0.656 -0.63 

5 0.434 0.570 -0.67 

20 0.3 0.612 1.354 -0.42 

0.5 0.572 1.148 -0.46 

0.7 0.545 1.030 -0.49 

1 0.516 0.918 -0.52 

2 0.461 0.736 -0.58 

3 0.429 0.647 -0.62 

5 0.390 0.551 -0.66 

40 0.3 0.602 1.406 -0.41 

0.5 0.561 1.187 -0.46 

0.7 0.533 1.062 -0.48 

1 0.504 0.944 -0.52 

2 0.447 0.751 -0.57 

,   3 0.414 0.657 -0.61 

5 0.374 0.556 -0.65 

80 0.3 0.600 1.446 -0.41 

0.5 0.558 1.220 -0.45 

0.7 0.531 1.091 -0.48 

1 0.501 0.969 -0.51 

2 0.443 0.769 -0.57 

3 0.410 0.672 -0.60 

5 0.370 0.567 -0.64 

100 0.3 0.599 1.455 -0.41 

0.5 0.588 1.227 -0.45 

0.7 0.530 1.097 -0.48 

1 0.500 0.974 -0.51 

2 0.443 0.774 -0.56 

3 0.410 0.676 -0.60 

5 0.370 0.570 -0.64 
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Chapter 2. New approaches for laser guide stars formation 

2.1. Influence of temporal lag 

Interesting possibility to correct for the general tilt of the wave front was put forward by 

R. Ragazzoni [1]. He proposed to take into account the fact that turbulent 

inhomogeneities are concentrated near the Earth's surface and the guide star is formed at 

altitude h » h*, where h* is the effective thickness of a turbulent atmosphere. So the 

vector characterizing a current angular position of a laser guide star at moment f is 

calculated as the follows 

Here qc(t) is a vector of a laser beam which is defined by atmospheric turbulence in the 

range of altitudes h «crl 2, where c is the velocity of light. If we disregard the 

temporal lag r, in the monostatic scheme the laser guide star is motionless 

^,(0 = ^(0 + ^(0 = 0. 

But if the temporal lag r between the direct and reverse propagation exists, some angular 

oscillations of the guide star are present 

A^(O=&(0 - fa* - *)=vfit - T) - <pf(t) * r-^2. 

Assuming the possibility to detect these small oscillations (in reality t« 1ms) we 

can expect that they are important for correction of temporal evolution of a natural star 

which is characterized by variation 

^l(t) = (ßj?(t-T)-(ßP(t). 

The hypothesis of frozen turbulence is valid for small temporal scalesf 

0s/(p,t) = 0s
F
p(p + vt,O), 

so 



**SP    ^SP sp 
d(pp      dcpp dp _   dcpp 

ä        dp   dt dp 

where v is a vector of effective wind velocity. As a result of this manipulations the 

standard deviation of temporal increments of angular spectrum of the guide star is 

<(Apm)2>=vV<A2>. 
dp 

Writing angular position of a point source in the turbulent atmosphere at the altitude x as 

0F=-^ !<*£-) JJ<*2«(*,0* \\d2pexV(iKp(h, 
L0      X 2 X 

we can calculate the standard deviation of these increments in time interval r: 

< (A^)2 >= (4K20,033r(i))21/<V3- 
'-'^-^ 

>x 

.5/3 

o 

Let us normalizing the obtained results by the standard deviation of a natural star 

oscillations 

< {cpff >= (2^20,033r(-))21/6i?o-1/3 /</#£(£) . 
6 0 

The ratio of these two variables is 

S = 
<(A0mf> 

<{<PP
F
1)2> 

! 2  2 
1 .    V X 

1-'Fl(6-1;-2^ 

\dl&(S> 

A, 

5/3 

IvVo 
6  Ä02 

J</$c£(0(l-|/*)5/3 



Because vr« RQ (for r« 10~3c, v = 10 m/c, RQ = 4 m, — « 10~2) the amplitude of 

angular oscillations for the guide star is hundred times less than the amplitude of a 

natural star image oscillations (corresponding angle is 1 - 2"). So to correct effectively 

for temporal shifts of a real star we need to have the possibility to measure small (about 

0.01") angular shifts of the guide star image in short temporal intervals { < x » 10   c) 

It is also interesting to calculate correlation between temporal displacements of the 
I* 

real (Apß1) and artificial (Apm) stars in time interval r.   It can be shown that for 

vr « RQ this correlation is equal to 

< A(pßlA(pm >     6 
j^C„2(£(l-£/x)2(l + (l-<f/*)2) 2x-7/6 

<(A0ßlf>-J<(A<pm)2> J^C2(£(W/x)5/3j^C2(£) 
0 0 

The correlation depends on the altitude of the beacon and on the altitude profile of 

turbulence intensity. With decreasing of x this correlation approaches unity. 

So with the considered scheme which allows for temporal evolution of oscillations 

the angular displacements of the natural star are possible to correct for, but to realize this 

scheme one needs the efficient wave front detector. 

2.2. DISTINCTIONS AND COMMON FEATURES OF TWO SCHEMES OF A 

LASER GUIDE STAR FORMING 

Application of adaptive correction in a ground based telescope to improve image quality 

is possible if a laser guide star is formed in the atmosphere. But it is difficult to correct 

general tilt of a wavefront using a signal from a laser star because the required 

information could not be obtained directly from measurements of a star dither. 



Roberto Ragazzoni made an attempt to consider systematically various approaches 

to the problem of a wavefront general tilt detection in adaptive optics system operating 

with the use of the signal from an artificial star (Refs.2-5). Some methods to solve this 

problem can be found in scientific publications but all of them increase complexity of the 

system technical realization. The following methods can listed as examples: 

simultaneous measurements of general angular dither of a bright natural star and a guide 

star [4, 5], employment of two-color laser guide stars [6], usage of auxiliary telescopes 

[7, 8], and laser sources [9-11]. In the second two cases a laser star could not be 

considered as a point source. 

Optical schemes with auxiliary telescopes or laser sources are simple enough. 

Roberto Ragazzoni describes two schemes of this type in Ref.6. In this report they are 

presented in Figs.2.1 a and 2.1b. 

In Ref. 5 Ragazzoni even used term «symmetry» to underline the equivalence of 

efficiency of these two schemes from the point of view of local tilt correction. In the 

present part of report we will show that the exact equivalence («symmetry») is absent. 

The detected informative signal determines an angular position of a laser guide star 

image in a focal plane of the telescope-sensor. This signal in a scheme (a) is described 

by the following equation 



1 1 

(a) (b) 

Fig. 2.1. Two schemes of a laser guide star forming: with the use of auxiliary laser 

illuminator (a), and with the use of auxiliary telescope (b). The following objects are 

drown here: a laser guide star generated in the atmosphere (1), an aperture of the main 

telescope (2), an aperture of auxiliary laser illuminator (3), an aperture of auxiliary 

telescope (4). Axes of the main and auxiliary telescopes are placed on some distance 

from each other. 

In scheme (b) slightly different equation is used: 

0b  =0ib(°) + 0*(Po) 



Here filb(p0) are random angular displacements of the energy centroid for a laser beam 

focused on altitude X. The beam is formed by an auxiliary laser generator with the 

optical axis shifted from the origin on vector p0 and slanted from the zenith on angle - 

p0l X, 0lb(O) are random angular displacements of the energy centroid for a laser beam 

focused on altitude X. The beam is formed by the main telescope the optical axis of 

which is pointed exactly at the zenith, ^?(y50)is a vector characterizing random tilts of 

the wavefront in observations of the secondary source dither in the focal plane of the 

main telescope. The secondary source is formed at altitude X and its image oscillates in 

the focal plane due to light refraction on atmospheric inhomogeneities. 

Let us assume that apertures of the main and auxiliary telescopes are placed so that 

correlation functions < 0ib(po)0^ > and < 0ib(O)0^(po) > are equal to zero (Refs.10, 

11,20). 

These schemes are intended to solve the problem of correction of random tilts of 

wavefront for a natural star, presuming that a natural star and artificial one have the same 

zenith distance and the same azimuth angle, i.e., to correct a random function^" (0). It 

is known that a natural star forms a plane wavefront in a focal plane of a telescope. 

In this report we will use an algorithm of optimal correction [10, 11, 20] insuring 

the lowest possible level of residual errors. For the two schemes of artificial star 

forming let us evaluate the ratio of this level to the variance of uncorrected dither of a 

natural star image. The variance for the scheme (a) is represented by the formula 

(optimal algorithm of correction [15-20]): 

< r >.-< w - «■ > i < ^f >-1 - <{;>f::^r> 

here 

< (0a f >=< q>l > + < (cp?)2 >,   < <P? (0)ft >=< tf (0)^-(0) >. 



And for the scheme (b) 
— pi —       2 

<ß2  >b=<(<P?  -0bY>l   <itf)2  >-^-,^^,2 <(<pn2><(pbv> 
where 

< (<Pb)
2 >=< tfb > + < (<P?)2 >, 

<<p?(O)0b>=< <p?(0)<plb(0) >. 

All in all, relative efficiency of correction (schemes (a) and (b)) 

fl2    _4 < ^(Q)fr'(Q) >2 on 
^  >a        <(^)2>[<^> + <(^)2>]' l' ^ 

*2 < ^(0)^(0) >2 r22, 

^ >ö        <(^)2>[<^> + <(^)2>r v' 

Only numerators < ^"(0)^(0) >2 and < 0?0lb >2 of these two formulas are different 

and, consequently, the variances are different of residual angular fluctuations. With the 

use of the following representation 

< fl?(O)0b(O) >= K(0)V< <P,b x (^)2 > 

Eq.2.2 can be simplified. As a result we obtain 

[1+ < (pp )   > / < p/ö >] 

here K(0) is mutual correlation in the focal plane of a telescope between angular 

displacements of the focused beam centroid and that for a plane wave (see Figs. 1.3 -1.6). 

The results of function K(0) calculations were presented in Ref.20.   Other quantities 

entering Eq.2.3 were also calculated earlier (Refs.15 -19). For example 

< <p?B >= (2^0,033^(^)21/6R0-1/3ld^n
2(^{[ö2(1 - £/ X)2]-1/6 - 

-[/)2(1-^/X)2+4c2r1/6} 



here RQ is the radius of the main telescope aperture, X is altitude of a laser guide star 

forming, c*(%) is altitude distribution of the structure function of the turbulent 

atmosphere index of refraction, b = a0 / R0, a0 is a size of a laser beam focused on 

distance X, c = K^RQ , äT0"
1
 (£) is the outer scale of turbulence on a current altitude £ , 

a, ^ ^„ss\2 /^iP\2  .   /"lgs\-1/3   0 
<(PF)   >=<WF)   >(~^T>       ~~      x 

XjGf^Cn
2(^)(1-^/X)2(^/X)-1/3 

Jof£C2(£(W/X)J k5/3 

0 

(2.5) 

These equation is obtained by summarizing the results of Refs.10 and 20 and published 

inRef.21. 

In Eq.2.5 the variance of the secondary source dither < {(p?)2 > is the product of 

the variance <(<pj?)2 > of dither of a point reference source image located on altitudeZ, 

averaging coefficient (algs / fi0)~1/3, where a]gs is a visible size of a reference star, and 

a ratio of two integrals 

Jc/$Cfl
2(0(W/X)2(£/X)-1'3 

^ * . (2.6) 

Jaf£C2(£(1-£/;05/3 

0 

It should be noted that the effect of the last two factors in Eq.2.5 on the result is 

quite opposite. The factor (aigs I R0)~
V 3 lessens the variance < {(Pp)z >, while the 

ratio of the two integrals increases with increase of altitude. There are a linear relation 

between such quantities as a visible size of a reference star a]gs and the altitude of a 

reference star forming X. The notation l(X) is introduced for the ratio of two integrals 

(2.6): 



,-1/3 fd#C2(£)(1-<f/X)2(#/X) 
±—x = 1(X). (2.7) 

jc/#c„2(a(i - 41 x) 
0 

5/3 

The dependence of 1(X) on the altitude is represented in Table 2.1 for a model of 

n
2(£) borrowed from Ref.22.  Table 2.1 consists of three parts corresponding to «the 

worst», «the best», and «medium» characteristics of atmospheric turbulence. From these 

data the simple formula can be drown describing residual dither of a natural star image 

K2(0) . K2(0) 

I  

3n Rn 

R~oV3 ,\s,-vn,^ 1 + (algs/a0)-
1/31(X) 

i + ^m    1(*) 

The value of \{X) was obtained equal to 0.7 and correlation coefficientK(0)=0.9 in 

estimations of function < ß2 >b performed with the following set of parameters 

aigs = 103m5 a = 10°m, RQ = 10m, and c = KÖ1fto1=5-lO and with the reference star 

located on the altitude of 90-100km. So 

< ß2 >b=\ - 0.81/[l+0,7]=0.52, 

that means the two-times decrease of the variance of a natural star dither for correction 

performed according the scheme (b). 

In the case of the scheme (a) employment the variance of the residual angular dither 

is expressed by the equation I 

</?2>a=l- <«■»> 
<(&")2>[<«2> + <(&*)2>]' 

Performing the same mathematical manipulation as with Eqs.(2.7) and (2.8) let us 

write the function of mutual correlation in the form 

< 0*0? >= K,(0)^< (fl?)2 x (flf)2 > • (2-9) 



After that we obtain 

</?2>a=1-„.     ..,,??"' 2,,- (2-10) 
KM 

[1+ < cpi > i < {&)* >] 

Here the correlation coefficient expressed as 

Kt(0) =< #>- >/V<(^)2x(^")2>- (2-11) 

More through analysis of mutual correlation function (2.9) is needed. As a result of 

calculations of this function analogous with calculations of K(0) we obtain 

< $ft >=< $?$? > (al0, / R0y
V62(X). 

The function 2(X) is represented in the third column of Table 2.1.   All in all, for the 

scheme (a) 

^ ^-^K./R.r'w (2-12) 

With the same parameters as were used in calculations of < ß2 >b (Eq.2.8). For the 

altitude X= 90 - 100km of a laser guide star forming we obtainX(2) = 6. In this problem 

the main telescope was used with the aperture radiusi? = 8m and an auxiliary telescope- 

illuminator with size a = lm, so b = 1/8, and a visible size of a reference star algs was 

assumed to be equal to 1km. 

So the level of residual angular distortions of a star image dither is the following 

< ß2 >a=l - 0.793(6/7)/[0.5+0,7]=0.43. 

We can conclude that the scheme (a) insures lower level of residual distortions as 

compared with the scheme (b), so this scheme is more promising. From the other hand, 

technical realization of the scheme (b) is more simple. In the scheme (a) behind the 

main telescope one or two auxiliary telescopes should be used, while in (b) only a laser 

illuminator is needed and this device is more cheap. 



Summing the result we should point out that the symmetry is absent in the two 

considered schemes (Refs.5, 7-9, and 11) of the laser guide star forming. The objective 

of these two projects was the generation of a guide star with finite dimensions rather 

when a point source. But according the estimations presented in Ref.23 considerable 

decrease of angular fluctuations and an image dither was not achieved in the both 

schemes. 



Table 2.1. 

n
2(£) is «the mean» 

X,km l(X) 2{X) 

1 2.260 0.863 

10 3.671 2.650 

20 4.329 3.469 

30 4.826 4.024 

40 5.240 4.455 

50 5.602 4.815 

60 5.921 5.134 

70 6.211 5.415 

80 6.472 5.666 

90 6.720 5.897 

100 6.947 6.112 

n
2(£) is «the best» 

X,km l(X) 2(X) 

1 2.107 0.915 

10 3.661 2.884 

20 4.452 3.740 

30 5.000 4.319 

40 5.444 4.780 

50 5.826 5.161 

60 6.167 5.493 

70 6.468 5.793 



80 6.747 6.062 

90 7.005 6.310 

100 7.242 6.537 



n
2(£) is «the worst» 

X,km \(X) 2{X) 

1 2.411 0.618 

10 3.292 1.999 

20 3.692 2.717 

30 4.073 3.194 

40 4.406 3.561 

50 4.697 3.865 

60 4.957 4.133 

70 5.194 4.367 

80 5.410 4.578 

90 5.615 4.771 

100 5.802 4.949 
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CHAPTER 3. PHASE CORRECTION OF AN IMAGE TURBULENT 

BROADENING UNDER CONDITIONS OF STRONG INTENSITY 

FLUCTUATIONS 

3.1. Introduction 

Atmospheric turbulence induces phase distortions of an optical wave which transform 

into amplitude distortions in the wave cross sections [1].   On a long path intensity 

fluctuations become so strong that points appear with zero intensity. In such points 

wavefront distortions are of a spiral structure.    Singularities of this type are called 

wavefront dislocations [2].    Development of wavefront dislocations was considered 

theoretically by the authors of Ref. 3. Considerable loss in efficiency of an adaptive 

optics system (AOS) employing a continuous surface mirror andHartmann-Shack sensor 

was also registered experimentally in the region of strong fluctuations [4]. These results 

confirm conclusions  of numeric  experiments  [5].     Problems  of adaptive  system 

development intended for compensation of turbulent distortions are discussed frequently 

in modern scientific literature. But it is not clear yet how the principal characteristics of 

an adaptive optics system such as the minimum size of an element and allowed temporal 

lag of correction are influenced by intensity fluctuations. Many questions concerning a 

wavefront sensor design and phase reconstruction algorithm are still without answers. 

In the present report these problems are considered in the case of a plane wave 

propagating in a randomly inomogeneous medium with Kolmogorov spectrum of 

fluctuations. Such simplifications allow one to «purify» the problem. In reality, the 

performance of an adaptive optics system is influenced by many other factors [6]. 

The results of numeric experiments presented in this report show that requirements 

to the element size and speed of adaptive control remain the same in the region of strong 

fluctuations as in the presence of the weak ones. Particularly, the size of an element of 

* 



segmented mirror corresponds to the Fried's radius r0 and minimum lag in a loop of 

adaptive control is equal to convection time rJV where V is speed of turbulent 

inhomogeneities transportation. Under these conditions theStrehl number S is not less 

than 0.5. 

The efficiency of a local tilt sensor in the region of strong fluctuations is also 

estimated in the present report. We applied an algorithm according to which the 

wavefront with spiral singularities is reconstructed using phase differences and 

discrepancy of phase approximation due to errors of measurements is minimized [12, 

13]. Moreover, the precision of computation of phase differences with the use of local 

tilts is considered. So the principal requirements to such sensors of local tilts as a 

shearing interferometer or Hartmann-Shack sensor is formulated. 

3.2. The setting of the problem for numeric simulation 

The problem of propagation of optical radiation in a turbulent medium is considered in 

the following setting. A plane wave travels through a homogeneous turbulent layer with 

thickness L (Fig. 3.1). The layer is characterized by intensity of turbulent fluctuations 

C„2 of the index of refraction n. The wave length is designated here as 1, and the wave 

number as k = 2p/l. An adaptive optics system and a thin convergent lens is placed at the 

far end of the layer. The diameter of the system aperture is D. These parameters 

determine two scales of the problem, namely, a transverse scale, i.e., Tatarskii's 

coherence radius r0 or Freid radius r0 

r0 = (0.489fc2Cn
2L)-3/5, Po = (1.46/C

2
C

2
L)-

3/5
, r0/Po = (l46/0.489)3/5 « 1.93      (3.1) 

and a scale in the direction of the wave propagation Ld = kr0
2 (turbulent length of 

diffraction).    Normalized aperture diameter D/r0 and path length q = LILd are two 



dimensionless parameters of the problem.    The path length q is related with the 

scintillation index b0
2by 

ß* = 1.24C>7/6L11/6 = - 
1.24 f i  \ 

46 

5/6 

written in Rytov approximation. 

  1.24 ( L 
UPOJ    " 0.489 [kr2 

.5/6 

= 2.54Q
5/6
,     (3.2) 

I]-" 

> 
O 
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Fig. 3.1. Schematics of a wave propagation. 

It should be noted that the turbulent length of diffractioris expressed here through Fried 

coherence length r0. To express it throughTatarskii's radius one should employ Eqs.3.1 

and 3.2. 

Propagation of the plane wave is described by the parabolic equation 

2//C 
dU 
dz 

f d2 d 
+ ^-j + 2k2{n-i) U (3.3) 

M2    dy2 

The complex amplitude U entering this equation is related with the scalar intensity of the 

field by the following equation E(x,y,z) = U(x,y,z)exp{ikz-i(ot}. Here n-1 « 1 are 

random  fluctuations  of the  index  of refraction n(x,y,z),  w  is   a  frequency  of 

electromagnetic oscillations.   The equation is supplemented with boundary conditions 

for a plane wave propagating along OZ-axis 



{x,y,z = 0) = l (3.4) 

and solved numerically according the splitting algorithm [7,8] with the use of symmetric 

scheme. Random phase screens are generated by the method described in Refs.9 and 10. 

The complex amplitude and phase screens were prescribed on 128x128 uniform grid. 

An aperture of convergent lens was placed in the center of the grid and occupied the 

region with dimensions 64x64 points. For a ratio D/r0 = 10 the distance between knot is 

6.4 times less than a coherence length. A random medium was represented by six phase 

screens, and averaging of intensity distribution in a focal plane was performed over 

ensemble of 50 independent random realizations. 

3.3. Adaptive system with a constant temporal lag 

Let us consider the effect of temporal lag on the efficiency of adaptive optics system 

with an ideal wavefront sensor and phase corrector. In this case a phase profile is an 

argument of complex amplitude: 

<p(p, 0 = arg(u(p, t - T)), p = (x, y), (3.5) 

where U is a field complex amplitude at the far end of a turbulent medium, i.e., in the 

plane z = L, t is temporal lag of the system, t is current time, arg is a main quantity of a 

complex variable argument. In a region of weak intensity fluctuations (tV«D) the 

variance of residual phase distortions is equal to phase structure function Df 

a2 « D,(xV) = 638(W/r0f
/3 (3.6 

and Strehl ratio can be estimated approximately as 

S « exp(- a2) = exp(- 6.88(x\//r0)
5/3). (3.7) 

Evidently, the decrease of AOS efficiency characterized by lessening of Strehl ratio 

depends on a phase variation during time t. Assuming that turbulence is frozen (Tailor's 

hypothesis), and wind velocity V does not depend upon Z coordinate, the phase 



difference acquired in time t corresponds to phase difference between points placed on 

distance Dr = t V from each other. 

In a vicinity of wavefront dislocations the phase changes sharply, so it is possible to 

presume that efficiency of AOS in a region of strong fluctuation decrease more quickly 

with increase of temporal lag t. But numeric experiments do not confirm this 

assumption. Three curves representing dependence ofS on ratio tV/r0 are represented in 

Fig.3.2. One curve corresponds to calculations according Eq.3.7, the two others obtained 

in numeric experiments for the case of weak (q = 0.1) and strong (q = 1.0) fluctuations 

are practically identical. The difference between results of numerical computations and 

calculations with the use of Eq.3.7 can be attributed to excessively large value of residual 

aberration variance estimated according to Eq.3.6 and also to the fact that in phase 

screens employed for simulations theinhomogeneities are absent with scales greater than 

the size of the grid (2D). 
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Fig. 3.2. Strehl ratio vs. normalized lag ofAOS. 

Regions close to dislocation points characterized by sharp variations ofwavefront 

are relatively small and their contribution to focal spot intensity is negligible so the 

explicit dependence is absent of AOS efficiency on variance of intensity fluctuations. 

3.4. Adaptive system with a segmented mirror 

Continuous surface mirrors are inconvenient for correction of waves with broken 

continuity of phase surface. Seemingly, in this case segmented mirrors are more 

promising. Positions of mirror segments are independent and the surface prescribed by 



such mirror can be broken. The dislocation of a wave front can also be represented by a 

mirror with continuos surface but the required number of elements in this case is much 

too large. 

To design AOS with required efficiency one need to know the size of corrector 

segment. In the region of weak fluctuations for calculations of residual phase distortion 

variance s2 the following formula are commonly used 

a2=1.03(d/r0)
5/3. (3.8) 

The results obtained in this way correspond to variance of phase fluctuations in a circle 

with diameter d after subtraction of the average phase [11]. When the mean phase and 

local tilts are corrected on each of the mirror segments the variance of residual phase 

distortions is equal 

a2=0.134(c//r0)
5/3. (3.9) 

Strehl ratio calculated as S = exp(-s2) with d = r0 is equal to 0.36 when the system 

corrects mean phase profile and to 0.87 when the mean phase and tilt are corrected. 

If dislocations are present the precise detection of thewavefront is impossible. So 

control of a segment by tilt and piston is senseless if thewavefront and its gradient is 

determined by phase averaging over the aperture.    To examine the dependence of 

segment size on efficiency of correction in the region of strong intensity fluctuations let 

us calculate correcting phase over an area d as 

cp + kSp, (3.10) 

where j, S„ and Sy are correcting profiles of the mean phase and local tilts, 

correspondingly. They are determined through the complex amplitude averaged over the 

subaperture: 

<p = arg((7); Ü = ^ \d2
9U(p), (3.11) 

°     d 



and weight-averaged phase gradient 

S = ^JdV(p)Vcp(p)=-^J(Ret;vimty-lm(;VRe(;)cy2p. (3.12) 

Here integration is performed over an area of a size d corresponding to a segment of the 

corrector, I(x, y) = Ulf is intensity of the incident radiation,^ is a wave number, P is the 

energy in a subaperture 

P=jc/2p/(p). (3-13) 
d 

These equations allow one to calculate controlling signals without determination of the 

phase surface.    Only the complex amplitude U (the parameter easily determined 

numerically) is needed. 

In Fig.3.3 the dependence is represented of Strehl ratio over the normalized path 

length q = LILd. The results obtained are in good agreement with estimations performed 

with the use of Eq.3.8 and 3.9 under conditions of weak intensity fluctuations. 
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Fig. 3.3. Strehl ratio vs. normalized path length L/(kr0
2) for an adaptive system with a 

segmented mirror.   Circles correspond to control of pistons, rectangles to control of 

pistons and tilts. 

The data represented here show that the dependence is unpronounced of correction 

efficiency on normalized path length characterizing intensity fluctuations. In the case of 

correction for mean phase profile (without control of tilts) the dependence is practically 

absent. Even small increase of Strehl ratio is observed in interval 0 < LILd < 0.4 which 

can be attributed to transformation of small-scale part of phase fluctuations into 



amplitude aberrations due to diffraction and corresponding lessening of residual phase 

aberrations. 

Efficiency of simultaneous correction for mean phase and local tilts decreases but 

remains higher than efficiency of correction for tilts only. The difference observed is 

less than 10%. 

So we can conclude that high efficiency of correction can be obtained in a regions 

of strong and weak fluctuations if a segment of the adaptive system mirror is less in size 

than or equal to the coherence length. Obtained Strehl ratio is not less than 0.5-0.8 

depending on the number of degrees of freedom for each segment and fluctuation 

intensity. There are not any additional requirements to the speed of correction so the 

main difficulty is creation of appropriate wavefront sensor. 

3.5. An algorithm of a wavefront matrix reconstruction 

Let us consider the problem of wavefront reconstruction with the use of given phase 

differences between a mirror subapertures. As a phase over a subaperture we use a 

phase prescribed to each subaperture, for example, a phase of a mean complex 

amplitude. 

The problem of wavefront matrix reconstruction was considered by many scientists 

(see, for example, Refs.14, 15, 16, and 17). The common algorithm employed is based 

on minimization of errors by the least squares method. It was supposed that if the errors 

are absent, the sum of phase differences calculated over a closed contour is equal to zero. 

Evidently, such supposition is not valid in the present ofwavefront dislocations. If 

a singularity falls in this contour, the sum of phase differences is equal to2p and errors 

appear in the common methods even if the phase is detected correctly.    So the 

application of corresponding algorithms of phase reconstruction is possible only in the 

region of weak intensity fluctuations. 



This restriction was avoided by the authors of Ref. 12. They proposed to modify the 

initial array of phase differences by adding2p#(Aris an integer number) to its elements. 

So the sum of phase differences in the absence of errors would be equal to zero over 

each contour and would not exceed p if errors are present. Solution to the problem can 

easily be found numerically with the use of fastFourier transform [13] on the square grid 

with dimensions NxN. In accordance to common terminology [12, 13] let us use the 

term «normal equation» (NE) for a method of phase reconstruction based on the least 

squares algorithm. Modification of this method proposed by the authors of Refs.12 and 

13 will be referred to as the modified normal equation (MNE). 

These two algorithms were realized numerically and two arrays of phase 

differences D*7, and jyu with dimensions A^/2(A^-1) were used to compute the sough for 

phase matrix jtJ, i,j = 1,2...,N. To evaluate the fidelity of the algorithm and the code by 

means of which the algorithm was realized the precise phase differences computed 

through the complex amplitude were substituted into arraysD^ and D^, Strehl ratio 

obtained in these numeric experiments coincided with a ratio obtained with the use of a 

segmented mirror (the results are presented in the previous section). 

3.6. Measurements of phase differences 

The modern real-time wavefront sensors working in a turbulent atmosphere are sensors 

of local tilts. Hartmann-Shack sensors and shear interferometers are typical examples of 

such devices. In both cases the output signal from every element of a sensor is 

proportional to the weight-averaged phase gradient over a subaperture, the intensity of an 

incident wave is taken as a weighting coefficient 

■Ö = ^Kp/(p)Vq>(p). (3-15) 

In a shear interferometer some characteristic function is added [18].    The phase 



difference between in boundaries of subaperture is calculated as a product of output 

signal on subaperture size. 

A* = gxd,Ay = gyd. (3.16) 

If along with Hartmann-Shack sensor a corrector is used with the same 

configuration of segments, employment of the second sensor of this type allows one to 

lessen errors of measurements. Elements of arrays D\, and D^- correspond to signals of 

sensors. In our numeric experiments the results of which are presented below three types 

of local tilts sensors were used: 

• The first, to fill in the array D\, with dimensions (N-l)N shifted along X- 

coordinate on a distance d/2 relatively to corrector elements. 

• The second, to fill in the array D^- with dimensions {N-\)N shifted along In- 

coordinate on a distance d/2 relatively to corrector elements. 

• The third, to control the tilts of a segmented mirror. This sensor is not shifted and 

its dimensions are NxN. 

The values of jf ■ obtained with the use of the first and second sensors are employ to 

control pistons and values gu from the third sensor to control tilts of the segments. We 

assume this configuration to be optimal or very close to it. 

3.7. AOS with a sensor of local tilts. Simulation results 

The adaptive optics system including three sensors of local tilts was used in numeric 

experiments. The results of these experiments are presented below. Local tilts were 

computed according the equations 
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Integration was performed over asubaperture with diameter d. Derivatives along X and 

Y coordinates were calculated numerically multiplying Fourier transforms of real and 

imagine parts of the complex amplitude by corresponding filtering function. 

Phase correction on segment i,j of the corrector was prescribed as 

<P/,, + &* + 9Vy> (3-IV) 

where gx and gy are local tilts measured by third sensor, andj,-, is phase matrix obtained 

by solving of MNE formed from the array of phase differences obtained with thirst and 

second sensors. 

The calculation were performed with D/r0 =10 and with D/d= 10.  So the size of 

subapertire for corrector and sensor was taken equal to Freid coherence length r0. 

In Fig.3.4 the dependence is presented of Strehl ratio on normalized path length. 

Computations were performed for the following variants: 

solution of NE for d -> 0 (a); 

solution of NE for d = r0 (b); 

solution of MNE for d = r0 (c). 



i        i       i 1 1 1        r   T IT 

0,0     0,2     0,4     0,6     0,8      1,0     1,2     1,AL/L d 

Fig.3.4. Strehl ratio vs. normalized path length L/(kr0
2)for different variants sensors. 

Approaching d to zero means that the size of a segment is equal to a distances 

between nodes in the computational grid and phase differences are determined without 

calculation of local tilts, only the values of the complex amplitude are used. 

Analysis of dependencies of S on (L/Ld) shows that if NE is used the correction 

efficiency decreases sharply when we hit the region of strong fluctuations(b0 > 1). But 

with the use of MNE efficiency decreases even more quickly. Lessening of an element 

size d does not result in increase of Strehl ratio so we should conclude that an adaptive 

optics system with a sensor of local tilts is ineffective in the region of strong intensity 



fluctuations even if an algorithm of phase reconstruction is used specially written for a 

phase matrix reconstruction in the presence of screw dislocations. 

To understand due to what factors this failure occurs, the dependence was 

considered of variance of phase estimation errors on normalized path length. The error 

over the sensor subaperture i,j was calculated in the following way 

e,y=(argt7;+1,y-arg(7;;y)-gx,rGf. (3.18) 

Notation  (^+1,7)   used here means  averaging over the third sensor subaperture 

coinciding with the corresponding element of the segmented mirror, andg, is weigh- 

averaged phase gradient over corresponding subaperture of the first sensor. The error e,-, 

was recalculated to the interval (-p,p].    The variance of errors was determined by 

averaging over the whole set of subapertures and over ten random realizations. 

Increase in the variance of errors of estimations of phase differences with the use of 

local tilts as a function of the ratio LILd, characterizing the variance of intensity 

fluctuations is illustrated in Fig.3.5. Analyzing the data presented we can conclude that 

the decrease of AOS efficiency is induced by sharp increase of the variance of errors. 

To obtain some gain from MNE employment a sensor should be used measuring 

precisely the phase differences in the region of strong intensity fluctuations. 
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Fig. 3.5. Dependence of the variance of phase difference estimations through local tilts 

on normalized path length. 

Principally, the difference between phases can be calculated using the coordinates 

of an interferometer fringe obtained as a result of interference between fields of adjacent 

subapertures, but realization of real-time measurement of this kind in a turbulent 

atmosphere could be very difficult. 

Let as make some notions concerning normalized aperture diameter D/r0. The 

results presented in the report were obtained with a ratioZ)/r0 taken to be constant and 

equal to 10.  The preliminary estimations for£>/r0>10 show that Strehl ratio decreases 



more quickly than efficiency of AOS and approaches its value obtained in the absence of 

correction. In its turn, the value of Strehl ratio for a wave without correction decreases 

with increase of normalized diameter D/r0. 

2.8. Conclusions 

The efficiency of phase correction for turbulent distortions which induce broadening of 

images was analyzed in the region of strong intensity fluctuations. Results of numerical 

experiments allow us to conclude that the crucial element of an adaptive optics system is 

a wavefront sensor. Concerning the segmented mirror it is possible to say that efficiency 

of it application is approximately the same in regions of strong and weak fluctuations 

(S = 0,5 with d = r0) providing that only an average phase is corrected. If local tilts are 

corrected along with the average phase, efficiency of AOS decreases with increase of 

fluctuation intensity, but remains higher as compared with the case when than only the 

average phase is corrected. On long paths these two variants ensure approximately the 

same efficiency. So under condition of strong intensity fluctuations the effect of local 

tilt correction on efficiency is negligible, and we can exclude the control over tilts and 

simplify the design of the system. 

The situation is almost the same with a wavefront sensor. Here detection of local 

tilts becomes inefficient in the region of strong fluctuations due to decrease of 

correlation between local tilts and phase differences. To employ the system under such 

conditions the wavefront sensor should be based on direct measurements of phase 

differences and the modified normal equation is used in the problem of phase 

reconstruction. 

Dynamics of AOS was considered only for a system with a constant temporal lag in 

the control loop, other factors were not allowed for. As was shown in numerical 

experiments the influence of constant lag on efficiency does not depend on fluctuation 



intensity. It is possible to assume that varying the lag along with other factors one may 

obtain more complex scenarios of a wave propagation. 

Spectral characteristics of adaptive correction remain beyond the boundaries of this 

investigation. More likely than not, in the region of strong fluctuations theAOS is very 

sensitive to the difference of wavelengths between a source beam and a direct one, 

because scaling of phase correction from one wave to another is difficult when the phase 

profiles are not continuous. 
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Chapter 4. Conclusions 

As a result of executed by us last years of researches, including, and in with the task 

under the given project, it is possible to formulate the following conclusions. 

A. The application of lasers for tasks of formation of artificial guide stars can increase 

limiting opportunities of ground-based telescopes, and also systems of construction of 

the image for objects formed in conditions of turbulent atmosphere. 

B. The theoretical aspects of a problem of account of efficiency of application of laser 

guide stars potentially were incorporated in works of the Soviet scientist studying a 

problems of propagation of optical waves in randomly non-uniform media: 

1. V.P.Lukin, Atmospheric Adaptive Optics (Novosibirsk, Nauka, 1986). 

2. Meeting Digest of "Scintillation" International Meeting for Wave Propagation in 

Random Media, Conference Chairs V.l. Tatarskii, A.Ishimaru, University of 

Washington, Seattle, USA, August 1992. 

3. V.M.Orlov, I.V.Samokhvalov, G.G.Matvienko, M.L.Belov, A.N. Kozhemyakov, 

The elements of theory of wave scattering and optical ranging (Novosibirsk,Nauka, 

1982). 

4. M.A. Kalistratova, A.I. Kon, "Fluctuations of arrival angle of light waves from 

extended source in turbulent atmosphere", Izv.VUZov. Radiofizika, 1966, V.9, 

No.6,1100-1107. 

5. V.L.Mironov, V.V.Nosov, B.N.Chen, "Correlation of shifting of laser source 

optical images in the turbulent atmosphere", Izv.VUZov. Radiofizika, V.25, No.12, 

1467-1471,1982. 



C. Is particular, the calculations of a signal with use of a laser guide star for adaptive 

systems of phase correction were executed firstly in USSR about 20 years back. 

D. History of a question of the first works under the theory of application of laser guide 

stars in article 

Robert Q.Fugate, Walter J.Wild, " Untwinkling the Stars - Part I ", 

Sky and Telescope, May 1994, pp.2-9. 

practically ignores all aspects of development of this question in USSR. Really in the 

early eighties in adaptive astronomy artificial reference sources were named laser guide 

stars. In this work the following stages of development of a problem are stated: 

a) Summer 1982 - conference in La Jolle, CA, first calculation of Dr. D.Fried. 

b) Dr.Will Happer made a new approach - sodium artificial beacon. 

c) Air Force Phillips Lab - experiment at SOR (1983). 

d) Report on classified conference in Febr. 1984. 

e) Lincoln Lab - experiment at WSMR (1984-1985). 

f) Renaud Foy and Antoine Labeyrie published in Astronomy & Astrophysics laser- 

beacon concept, 1985. 

g) Laird Thompson, C.Gardner - experiment on Mauna Kea, 1987. 

E. It would be necessary once again to emphasize, that in USSR about 20 years the 

following accounts back were executed. So during 1979-1980 years in works: 

1. V.P.Lukin, "Tracking of random angular displacements of optical beams", V 

All-Union Symposium on Laser Beam Propagation, Tomsk, Proc. Part II, 33-36, 

1979. 



2. V.P.Lukin, "Correction for Random Angular Displacements of Optical Beams", 

Kvant. Elektron. V.7, pp.1270-1279, 1980 [Sov.J.Quantum Electron. 10, 727-732 

(1980)]. 

Dr. Vladimir P.Lukin was first, who have made mention of the fundamental possibility 

of using radiation backscattered by the atmospheric aerosol for adaptive phase of 

correction. 

F. As far as we know the first works on use of the laser for formation reflected from of 

an atmosphere of a signal for active management with correction of the image were 

executed in USSR in 1978-1983 years. One of pioneers of such works has become 

Dr.Vadim G.Vugon, working then in SPA "Astrophysics". The first experiments under 

his management were executed in area in territory Special Astrophysical Observatory of 

Academy of Sciences USSR (Northern Caucasus). 

G. In work of the Dr R.Fugate, "Laser beacon adaptive optics", Optics and 

Photonics News, 14-19, June 1993 for the first time was shown, that in the classical 

approach the monostatic scheme of formation of a laser guide star is not effective from 

the point of view of correction of general inclinations of wave front. 

H. In works 

1. V.P.Lukin, "Correction for Random Angular Displacements of Optical Beams", 

Kvant. Elektron. 7, 1270-1279 (1980) [Sov. J.Quantum Electron. 10, 727-732 

(1980)]. 

2. VXukin and B.Fortes "Efficiency of adaptive correction of images in a telescope 

using an artificial star". OSA Tech. Digest. 1995. Vol.23, pp.192 - 193. 



3. V.P.Lukin, "Laser beacon and full aperture tilt measurement", in Adaptive 

Optics Vol.13 of OSA Technical Digest Series (Optical Society of America, 

Washington, D.C., 1996) Addendum AMB-35, pp.1-5. 

the algorithm of "optimum" correction of an inclination of wave front was offered and 

the efficiency of this algorithm was shown. Unfortunately this algorithm nor gives to 

effective correction of a general inclination of wave front for the traditionalmonostatic 

scheme of a laser guide star. 

I. During 1993-1996 years it was offered a number of the various schemes, including, 

and of the schemes, which on a plan of the authors should give the decision of a problem 

of correction of a general inclination of wave front. It is necessary to specify the 

following works: 

1. R.Foy, A.Migus, et al., " The polychromatic artificial sodium star: a new concept 

for correction the atmospheric tilt ", Astronomy and Astrophysics, 111, pp. 569 - 

578 (1995). 

2. R.Raggazoni, S.Esposito, and E.Marchetti, "Auxiliary telescopes for the absolute 

tilt-tip determination of a laser guide star" Mon. Not. R.Astron. Soc. 1995. Vol.276, 

pp.L76 - L78. 

3. R.Ragazzoni, "Absolute tip-tilt determination with laser beacons", 

Astron.Astrophys. 305, L13-L16 (1996). 

4. M.S.Belen'kii, "Full aperture tilt measurement technique with a laser guide 

star", in Atmospheric Propagation and Remote Sensing IV, editor J.C. Dainty, 

ProcSPIE 2471,289-296 (1995). 

5. M.S.Belen'kii, "Tilt angular correlation and tilt sensing techniques with a laser 

guide star" in Optics in Atmospheric Propagation, Adaptive Systems, andLidar 

Technique for Remote Sensing, editor J.C. Dainty, ProcSPIE, 2956,206-217 (1996). 



6. Yearly Status Report Adaptive Optics at the Telescopio Nationale Galileo, edited 

by R.Ragazoni, August 1996. 

7. Roberto Ragazzoni, Propagation delay of a laser beacon as a tool to retrieve 

absolute tilt measurements, The Astronomical Journal, 465, L73-L75,1996. 

8. R.Raggazoni, "Absolute tilt-tip determination with laser beacons" Astron. 

Astrophys, 1996, Vol.305, p.L13 - L16. 

9. S.Esposito and R.Ragazzoni, "Techniques for LGS tilt retrivel: a numerical 

comparision", in the book "Adaptive Optics at the Telescopio Nazionale Galileo", 

ed. by R.Raggazoni, pp.1 - 20, December 1997. 

10. S.Esposito and R.Ragazzoni, "Non conventional techniques for LGS tilt 

retrieval: an update", in the book "Adaptive Optics at the Telescopio Nazionale 

Galileo", ed. by R. Raggazoni, December 1997. 

11. R.Raggazoni, "Robust tilt determination from Laser Guide Star using a 

combination of different techniques", Astronomy and Astrophysics, 319, L9 - L12 

(1997). 

12. R.Raggazoni, "Laser guide star advanced concept: tilt problem", in the book 

"Adaptive Optics at the Telescopio Nazionale Galileo", ed. by R. Raggazoni, 

December 1997. 

K. At the same time more careful analysis of a backescatering signal (as a signal 

describing a random angular position of a laser guide star) for use for correction of a 

general inclination executed in following works: 

1. V.Lukin, "Limited resolution of adaptive telescope with the use of an artificial 

star", Proc. ICO - 16. "Active and Adaptive Optics", 1993. P.521 - 524. 

2. V.Lukin "Adaptive forming of beams and images in the atmosphere". Atmos. 

Ocean. Opt., 1995. V.8, pp.301 - 341. 



3. V.P.Lukin, "Models and measurements of atmospheric turbulence 

characteristics and their impact on AO design", OSA Technical Digest Series 

"Adaptive Optics", 1996, V.13, pp.150-152. 

4. V.PXukin, B.V.Fortes, "Comparison of Limit Efficiencies for Various Schemes 

of Laser Reference Star Formation", Atm.Oceanic Optics, 1997 V.10, pp.34-41. 

5. V.PXukin, "Hybrid scheme of formation of laser reference star", Atm.Oceanic 

Opt., 1997, V.10, pp.975-979. 

6. VXukin, "Monostatic and bistatic schemes and optimal algorithms for tilt 

correction in ground-based adaptive telescope" Appl. Opt., 20 July, 1998. 

7. VXukin "Problems of laser guide star forming" Atmos. Oceanic Ops., 1998, 

V.ll, No.5, pp.1 - 13. 

8. V.PXukin, "Two Schemes of Laser Guide Star Formation'7/Atm.Oceanic Opt., 

1998, V.ll, pp.1253-1257 

shows, that 

- the bistatic scheme cannot give (even provided that the laser guide star is not a point 

source and probably to carry out averaging on its seen size) rather effective signal for 

complete correction of a general inclination of wave front, 

- offered a number of the authors the hybrid schemes by simultaneous use of signals for 

monostatic and bistatic guide stars, nor give of appreciable improvement of correction. 

L. As show estimations a residual level of random angularjitter of the image of a natural 

star (after correction with use of a laser guide star) makes approximately 40% from a 

level of this signal without correction. If to consider, that thejitter of the image makes 

approximately 80-85 % for all of a variance of phase fluctuations, after correction on the 

basis of use of a laser guide star the residual level phase will make approximately 30% 



from initial. That is in a limit use only of signal from a laser guide star can reduce a level 

phase fluctuations approximately in 3 times. 

M. Simultaneous use of a signal of a natural star and laser guide star can give an 

opportunity to reduce a residual level of the phase fluctuations 10-20 time. 

N. With formation of the image of object through a layer of an atmosphere (for 

unastronomical objects) most effective can be use, alongside with a signal from a laser 

guide star measurement of an instant position of the image of the object. This signal can 

effective be used for correction general jitter of the image of object. 

O. Use of several laser guide stars hardly can give serious improvement of a situation 

with correction of a general inclination of wave front of the formed image. 
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Abstract 

In the first chapter of report we have considered to limiting possibilities of adaptive 

correction of images in astronomical telescopes which operated with laser guide stars 

forming. Some problems, connected with development of ground-based adaptive 

telescope, particularly, with its fitting additional optical system for laser guide star 

formation, are treated in the paper. The point of the work is determination of the type of 

the laser guide star being formed. Here, the calculated results are presented for scheme 

for laser guide star formation, when arbitrary magnitudes of the correlation between 

random angular displacements of the image of scattering volume stipulated by the laser 

beam fluctuations over direct and back paths can be obtained. Expressions for the 

monostatic and bistatic schemes are obtained as limiting cases. 

In the second chapter of this report we deal with laser beams turbulent distortions 

correction under strong fluctuations of its intensities. 

This material is based upon work partially supported by the European Office of 

Aerospace Research and Development, Air Force Office of Scientific Research, Air 

Force Research Laboratory, under contract SPC 98-4041. 

Keywords: turbulence, tilt correction, adaptive telescope, laser guide star, bistatic 
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Chapter 1. Some problems in the use of laser guide stars 

1.1. Introduction 

It is known [1-7], that the application of engineering of laser guide stars (LGS) can 

considerably expand a range of effective work of adaptive optical systems for 

astronomical ground-based telescopes. At the same time there are rather serious 

problems on a way of real application LGS in astronomy. 

One of such problems is the practical impossibility of correction of a general 

inclination of wave front of a real star $f, using only data of measurements jitter of the 

image of a laser guide star in focal plane of a telescope [7-11]. Was shown earlier [7, 10, 

11], that the monostatic scheme of formation LGS does not give an opportunity 

effectively to correct fluctuations of a general inclination of wave front. The attempts to 

improve this situation, using algorithm "optimum" corrections, have appeared nor too are 

effective [12-15], in view of low effective of the given measurements of an angular 

position of LGS for the monostatic scheme of formation. 

1.2. "Optimal" algorithm of tip-tilt correction for natural star 

Algorithm of "optimum" correction [13,  16,  17], ensuring a minimum of the 

following functional, describing a level residual fluctuations 

,~pl      >- N2               /-A2^Ji            <<PF <Pm> 
<m-A<Pm)   >min=< (<PF )   >   1~     f   »/ 2 ~~^ (1) 

is achieved by scaling the given optical measurements^ on an adjusting multiplier 

A _ <<PF <Pm> (2) 



Here <...> is the brackets designate averaging on fluctuations, connected with action 

atmospheric turbulence, 0p(Ro) - angular fluctuations of random displacement of the 

image of a real star (fluctuations of a general inclination of wave front of the plane 

optical wave which has come on the aperture of a telescope i?0), <pm - measured angular 

fluctuations of random displacement of the image LGS, caused by action atmospheric 

turbulence, < {@p1)2 > - variance of fluctuations of a general inclination of wave front for 

a natural star. It is necessary to note, that adjusting factor A can be determined 

experimentally during operation of adaptive system on a telescope. For it is necessary to 

have an opportunity of realization of measurements of mutual correlation and varince of 

jitters of the images LGS and bright natural star. Probably also to do the preliminary 

calculation of adjusting factor A till the formula (2), using the models of vertical 

distribution of parameters of atmospheric turbulence. 

If to consider, that formed in an atmosphere LGS it is not restored by the reception 

aperture of a telescope, then 

MSP 
<Pm=<Plb+<PF\ (3) 

where 0W is the random angular displacement of a laser beam forming LGS, pf is 

random angular displacement of the image of a dot source in focal plane of a telescope. 

If to characterize quality of correction, as ratio of the variance of residual fluctuations (1) 

to the value of the initial variance < {$p )2 > 

ß =< {cpf - A0m)2 >min / < (41)2 >= \ 
~pl -      2 

< {$£f x (<pm)2 > 
(4) 

then, as shown in [15], the quality of correction for the monostatic scheme is given 



l + i-l/3_27/6(1 + &2)-l/6H^c2(a(1_^/x)5/3j^c2(^) 

0 0 (5) 

Here X is a height of formation LGS, b = a0/R0, a0 is initial size of a laser beam, 

C2 is a vertical structure of intensity of turbulence, < 0m
2 > is variance fluctuations of an 

angular position of the image of LGS. 

1.3. Bistatic schemes LGS 

The transition from monostatic scheme to the limiting bistatic scheme gives a really 

appreciable benefit [8-12], Limiting bistatic scheme is realized provided that fluctuations 

of optical radiation on direct (from ground up to a guide star) and return (from a guide 

star down to the aperture of a telescope) paths completely noncorrelated. One of variants 

of such bistatic scheme has offered R.Ragazzoni [8, 9]. In his scheme the guide star 

forms with use additional laser illuminator, displaced of a rather optical axis of a 

telescope on two orthogonal directions. In the assumption, that LGS represents a dot 

source, the level residual fluctuations [12, 18] is given 

21/3({^C2(£(l-<f/X)[l + (l-£/X)2]~     )2 

ß-l- Q x = • (6) 
\+b-m] \dtc2

n(m-zix)m \d&n& 
0 0 

Other variant of the bistatic scheme is possible [10, 11], when the laser star is formed 

on an axis of the main telescope, and the measurements of LGS jitter carry out two 

additional removed telescopes, for which formed scheme of LGS is limiting bistatic one. 

In this case with "optimum" correction (for dot LGS) the value ß (level residual 

fluctuations) is given [12,18] by 



2m{\d^C2
n{m-^l X)\\ + b2{\-^l X)2\m)2 

ß = l- e x = • (7) 

o o 

As shows the numerical analysis, for b = a01R0 < 1 the expressions (6) and (7) 

practically coincide. It even has entitled R.Ragazzoni to talk about "symmetry " of these 

two schemes. 

1.4. Distinction and similarity of two schemes of formation laser guide star 

It is necessary once again to emphasize, that the expressions (6) and (7) are received 

under condition that the LGS is "visible" in the aperture of a telescope as a dot source. In 

too time it is known [8 - 11], that bistatic scheme of formation LGS enables to create 

undot, but extended guide source. Then for the scheme of formation LGS with two 

additional illuminators (scheme of R.Ragazzoni [8, 9]), laser star giving the image, as a 
i 

luminous string, the quality of correction of a general inclination of wave front^p (R0) 

is given 

_ pi _ ??    2 

:(^/)2>{<4> + <Wf)2>) <l 

where pm = %b + 0, $p is vector describing random angular displacement of the 

image of an extended "secondary" source. 

For the scheme of formation LGS [10, 11], using laser illuminator and main 

telescope, working on same axis, and two additional telescopes, which " see" a guide star 

as a luminous piece of a direct line, we receive [12, 18-20 

/>-!-•   „,   <^'f,b>2 TT- (9) 
<(^')2>{<w|> + <(#)2>} 



For realization of a comparative estimation of efficiency of the various schemes we 

shall take advantage of results of the paper [18]. In it the factor of correlation of random 

displacement of a center of gravity of the focused optical beam @lb and angular 

displacement of the image of a plane wave 0p(Ro) in focal plane of a telescope caused 

atmospheric turbulence was calculated with a displacement fa axes of an optical beam 

and telescope 

K{d) = 
nl 

<9ib(dm > 

< <pfb >< (<PF
1
)
2
 > 

(10) 

Here is d = \PQ\ IR0. The accounts were executed for model of a spectrum atmospheric 

turbulence [21-25] 

0„(^^ = O,O33c2(^-11/3(l-exp(-^2/^o2))5 (11) 

where *:o !(£) is the outer scale atmospheric turbulence. 

Under calculations in paper [18] of factor of correlation K(d) the outer scale of 

atmospheric turbulence was set as constant size for the whole atmosphere. Hardly it is 

justified for all cases. Let's take advantage of several models [26, 27] of a vertical 

structure of outer scale: 

model A0 

Ko\Z) = 0A{, 

model B 

_x J0.4£   %<25M -1, 

model C 

0.4£   %<25M 

KO\€) = \2JZ,   ,25M<Z<\000M   , 
2VTÖÖÖ,   £>1000JW 
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model D 

r£-7500n2 

1 + 

model E 

2000 

i 4 

[£-850012 

1 + L   2500 

Efficiency of application of such models was already shown earlier. On Figs.l and 2 

as five fragments (for models A, B, C, D, E) the accounts of factor of correlation K(d) as 

function of the space of axes of the focused laser beam and telescope d = \/^\/ÜQ for two 

heights X LGS formation, accordingly 10 and 100 kms are given. The meanings of 

parameter b = a0/Ro were set equal 0.1, 0.3, 0.7, 1.0, 3.0, 5.0.  It is necessary to note, 

that the best correlation the jitter of a center of gravity of the focused beam and the jitter 

of a center of gravity of the image of a plane wave is achieved with size of the ration = 1. 

If b = a0/R0  is not large, i.e.,  a0<R0, then has a place asimptotical behaviour 

K(d,b)»(2b)l/6, and when a0 > i?0 is received, that K(d,b) * (21b)116. 

Using expression (10) for factor of correlation K(d) with d = 0, it is possible to write 

down expression (9) in the following kind: 

#2(0) n^ 
{l+<(^)2>/<4>} 

Thus, the efficiency correction of general inclination of wave front for bistatic 

scheme [18] will be determined by value #2(0) and the ratio < (ps
F
sf > I < yfb > • 

For the wide focused laser beam having the initial size a0, the variance laser beam 

jiiter in approximation from paper [28] is given 



X 

pi >= In2 0,033r(l / 6)21/6 jd%C2 (£>(1 - <f / xf 
0 (13) 

a2(l-{/X)2 -1/6 
4(l-^/Z)2+2/r0- 

-1/6 

The variance of jitter of the image of an extended source was studied rather well 

earlier by number of the authors [29-31, 11]. We use expression for <{jpf )2 > from 

paper [11], written down for a spectrum (11). Then to within 5% of accuracy we receive 

for ratio 

-1/6 X 

J 
0 

{cpff >i <<PI>= \d^i{m-^i xfM^i xf+R2
a{\-^i xf 

4({/X)2+R2
a(l-t/X)z+2KÖ- 

1-1/6 

-1/6 
IdZClim-ZIX)2 [a2(l-<f/X)2r     -\a2(l-Z/X)2+2KÖ2 1-1/6 

(14) 

Here ab is seen linear size of an extended "secondary" source, Ra is the size of the 

aperture of an additional telescope. The accounts of the ratio of variances 

< (pf)2 > I < p2b > f°r various ratio of sizes ab, Ra, a0 were executed. The model of a 

high-altitude profiles of C2(£) was taken from paper [32], appropriate the "average" 

conditions of vision through an atmosphere are used. Some models for the description of 

a high-altitude profiles of outer scale atmospheric turbulence are used: models C and E, 

and also fixed meanings KQ
1
 =3, 10, 100 and 1000 meters. The accounts were carried 

out for several meanings of the apertures of the main telescope R0 = 1,4 and 10 meters. 

The results are given on Figs.3 and 4 (as a set of function f(e) =< (pf) >/<(<Pib) > f°r 

X = 10 and X = 100 km) as six fragments each, the left column of figures corresponds to 

meaning Ra/R0 =0.1, and right - Ra/R0 = 1. The ratio of the seen size extended " 

10 



secondary " of a source ab to the initial size of a laser beam (parameter e = ab/a0) was 

set in an interval from 0.1 up to 1000. Thus we have all necessary characteristics for an 

estimation of efficiency of correction of a general inclination of wave front. 

Let us to compare the efficiency this scheme (use Eq.(12)) with a case, when the 

"secondary" source is seen from the aperture of an additional telescope as dot fo < Ra), 

then <(0FS)2>/<plb>=(ao/Ra)
m. In this case for level of residual fluctuations is 

received in the next form 

#2(0) no # = 1- ^ITT- (15) 
i + (R0/Raf

3 

To compare efficiency of correction of a general inclination of wave front for 

extended and dot LGS, we use specific digital meanings of parameters which are 

included in the formulas (12), (14), (15). Let's consider fy = 4 I % = 40° 1, X = 100 

km, model C;f(£) - "average", model Kö\& - model C, the additional telescope has the 

aperture Ra = 0.1R0, Ra = R0- Using curves on Fig.2, we receive K(0) = -0,7 for meaning 

Ra = O.IRQ and K(0) = -0,95 for meaning Ra = R0, and using fragments of the second line 

on Fig.3 we come to the following results: 

ß = 0,57, fi> = 0,84 for Ra=0.\R0, ß = 0,31, ßb = 0,71 for Ra = R0. 

Taking into account all this, it is possible to recommend construction LGS not for a 

separate telescope, but for separately taken observatory (for example, at top of a volcano 

Mauna Kea). Thus it is supposed, that in observatory there are some telescopes with the 

various sizes of the apertures. Thus the largest telescope is used as main illuminator. 

This telescope forms for itself monostatic LGS. With formation of such star by the full 

aperture of the main telescope (a0 = ^o) tne monostatic star appears practically 

motionless [7, 10], but this star can be used for measurement high-order aberations of a 

phase of wave front. In too time for smaller telescopes operating in observatory, such 

11 



guide star will be act as bistatic one (see (7)), and thus parameters = aQ/R0 will be larger 

than 1. 

1.5. Hybrid scheme LGS 

Already the idea [11, 18, 19] of application the hybrid scheme repeatedly expressed. 

The hybrid scheme of LGS have been assumed monostatic and bistatic schemes 

operating simultaneously. In such scheme the simultaneous measurement of an angular 

position of the image of the monostatic (is offered with a0 < R0) star in the main 

telescope 

Pmono = <Plb + 0F (R0) 

and angular position of the bistatic star in focal a plane of an additional telescope 

(size of the additional telescope aperture Ra) 

0bi = <Plb + PF\Ra) • 

We use for correction a difference of these two measurements 

A = ymono - 0bi = (pf (R0) - VF (Ra). 

Efficiency of correction of a general inclination of wave front for "optimum" 

algorithm of correction is given 

R._ <0fl(RoW
s

F
p(Ro)>2  (l6) 

< (<pßl(R))2 > {< (PS
/(RQ))

2
 > + < (<PF

s(Ra))2 > 

For enough large height of formation LGS practically is received 

£«1-7 r-T. (1?) 
{l+<(^(i?fl))2>/<(^(i?o))2>} 

If to compare this expression with (12), we receive, that for the hybrid scheme the 

efficiency of correction of a general inclination of wave front (Eq.(17)) does not depend 

on parameters of a laser beam forming a star. It is possible also to show, that the hybrid 

12 



scheine has larger efficiency. For the same parameters, as earlier, i.e., R0 = 4 i, ab = 400 

i, X = 100 tons, we receive 

ß = 0,38 for Ra = 01R, ß = 0,24 for Ra = R0. 

However hybrid scheme assumes presence of two wave front sensors [33]. 

The given hybrid scheme can be it carried out on pair of telescopes constructed with 

opportunities of realization of idea of a telescope - interferometer, as on an example, pair 

of 10-meter telescopes - Eack-I and Eack-II, or pair 8-meter telescopes from family of a 

telescope - interferometer VLTI. 

13 
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Chapter 2. Adaptive correction of the focused beam in conditions strong 

fluctuations of intensity 

2.1. Introduction 

Long time the terms "phase correction " and "wavefront correction" were considered 

as interchangeable concepts, and "phase corrector" and "corrector of wavefront" - 

synonyms. The adaptive correction was frequently treated as straightening of 

wavefront, if deal with recieving of the deformed wave. For adaptive focusing of 

beams the correction was considered as predistortion of wavefront. 

On the other hand, the stricter mathematical consideration within the framework 

of wave optics describes focusing of a beam or image as addition of eigen waves 

with of their phase fluctuations. From this point of view the adaptive element phases 

eigen waves and provides the maximal intensity in focus of optical system. 

In usual conditions, if the wavefront is rather smooth surface, both approaches 

really are practically equivalent. However with infringement of a condition 

smoothsness of wavefront, the situation varies. It occurs, for example, in turbulent 

atmosphere, when fluctuations of intensity caused the fluctuations of a parameter of 

refraction, are rather strong. 

It is known, that dislocations of wavefront conterminous to points where instant 

meaning of intensity equal to zero, arise with distances approximately equal 

diffaraction length Ld = b-Q , where r0 - coherence radius for a plane wave. 
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With presence of such points the wavefront of a reference wave cannot be 

determined as a smooth one-coherent surface, therefore efficiency of adaptive 

systems with flexible mirrors begins to be reduced. 

At the same time, the numerical experiment with model of a compound phase 

corrector has shown, that its efficiency practically does not change with transition in 

area of strong fluctuations of intensity. These results were stated in previous reports 

[1], the calculations were carried out for a plane wave, and the adaptive system 

operated as a "receiving system". 

2.2. Comparison cases for plane wave and gaussian beam 

Before to consider the results received for a focused wave beam in adaptive system, 

working as a "transmeter system", i.e. on formation of the focused beam, we shall 

remind the most important results received for a plane wave. 

We have found out, that the efficiency of adaptive system with a compound 

corrector does not vary with transition from area weak fluctuations of intensity in 

area strong fluctuations. This conclusion has seemed to us at first little bit 

paradoxical, as we expected, that the presence of the special points of a phase and 

breaks of wavefront will require application of an adaptive corrector with large 

number of elements. However it has not taken place. From the point of view on 

adaptive system as on system of phasing of eigen waves, and should be. 

Is valid, the transformation of phase distortions in peak, with transition from short 

optical path to long path, does not result at all in reduction of the size of area of 

coherence, and even on the contrary, results in some increase of it size. Therefore 

having a compound mirror with the size of an element equal to radius of coherence, 

we can to adjust among themselves these coherent areas and by that ensure coherent 

addition of waves in focus of telescope. 

22 



From this point of view, it is easy to explane and other result for a plane wave: 

the dependence of efficiency of adaptive system on delay in circuit of correction 

practically does not vary with transition from weak fluctuations to area strong 

fluctuations. 

A task of the given work was researches of a more interesting case - a wave as a 

focused gaussian beam. We wanted to check up, whether it will be possible to receive 

the same high quality of correction for a beam, as for a plane wave. Besides in this 

case adaptive system works as a "transmeter system", that too can result in other 

results. 

It is known, that for "ideal" adaptive system in such system the high quality of 

correction of the focused beam is possible. It was shown in works P.A.Konyaev and 

Prof. V.P.Lukin. The "ideal" means, that the phase corrector has the indefinitely 

small size of an element and the boundary conditions describing a field on the 

radiating aperture of adaptive system look like: 

U{p) = 4)(ß)exP(- arSM(p)) (2.1) 

In our case the phase corrector has the finite size of an element equal in our 

numerical experiments to Fried's radius of coherence for a plane wave. 

Let's consider at first results for the "ideal" wavefront sensor and corrector. Here 

it is interesting to compare the schemes for plane wave and focused beam. Result of 

calculations shown on Fig.2.1. In both cases the system works in a mode as a 

"transmeter system", i.e., the irradiated wave at first is modulated by an adaptive 

phase corrector, and then is distributed through inhomogeneous index of refraction. 

In case of focused gaussian beam a measure of quality of correction is the average 

intensity in focus, and in case of a plane wave - intensity in a distant zone, i.ä., in 

focus of a lens, located on the other end, in a plane z = L . This approximately 
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correspond wide collimated beam, or wide beam focused far beyond a layer 

randomly non-uniform media. 

As follows from a Figure 2.1. we have essentially different result for the focused 

beam and plane wave. We changed length of a path L in a range from 1/10 up to 

10 Ld and have not found out essential decrease of efficiency correction for a case of 

a plane wave. Other result has turned out for gaussian beam. Already with L = 2Ld 

focal intensity is reduced twice, with L = 5Ld - in three times, and with L = lLd - in 

four times in comparison with the diffraction-limited meaning. From here follows, 

that there is a principal restriction on pure phase correction of turbulent broading of 

the focused beam. What was not adaptive system, completely to compensate 

turbulent effects on long paths it will be not possible. For presentation in following 

Table such is shown, that in this case means a long path. Here are simply counted 

meaning Ld for r0 = 10 ni and A = 0.5 mm and for presentation the mentioned above 

meanings of lengths of paths are shown. 

Table 1 

Ld 2Ld 5Ld lLd 

Z=125km L = 250 km L = 625 km L = 825 km 

SR = 0,68 SR = 0,48 Si? = 0,33 SR = 0,25 

The calculation was executed for the size of the aperture D = lO0, i.e., D » r0. 

For D > 10 r0 it is possible to expect the approximately same dependence SR from 

L/Ld at least for 0.1   <  SR<1. 

Now we shall consider other variant - correction only the potential part of phase 

distortions. Here a concept of the two parts of phase fluctuations are introduced: 

vortex and potential components of phase. This variant corresponds to adaptive 
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system of a traditional type with a flexible mirror and wavefornt sensor, which using 

standard algorithm of reconstruction of a phase from its differences. In previous 

report [1] we represented result for a plane wave, that now is interesting to compare 

them to results of calculations for the focused beam. They are shown in a Fig. 2.2. 

Is unexpected a little on the first glance that a system effectiveness with a plane 

wave decreases faster (in a case shown in a Fig.2.1. it was on the contrary - intensity 

in focus of a beam decreased faster). However it is easy for understanding if to take 

into account that in system with the focused beam as a reference radiation is the 

divergent wave. And in a divergent wave the fluctuations of intensity develop slower 

on large distances. It is obvious if to compare expressions for scintillation index for a 

plane wave 

/£ = 1.24C„y/6Zn/6 (2.2) 

and for divergent spherical wave 

&2 = 0.42C„V/6£11/6. (2.3) 

From these formulas follows, that in a divergent wave the given meaning of 

scintillation index will be on a path almost twice longer for equal meanings C„ k1!6. 

With equal L in a divergent spherical reference wave phase dislocations will be less 

and efficiency of correction - higher. 

Thus we have compared efficiency of adaptive correction for a plane wave and 

focused beam and have found out that in case of correction all aberrations (including 

phase dislocations) with growth of length of a path is reduced focal efficiency for the 

focused beam, and with correction smoothed (potential) of a part only phase 

aberrations - on the contrary faster. The truth the scales of lengths of paths thus differ 

almost on the order. Let's notice that in both cases the spatial resolution of adaptive 
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system was necessary infinite, i.e., we considered that the sizes of elements of the 

wavefront sensor and corrector d much less than Fried's radius of coherence r0. 

Further us interests efficiency of adaptive system with the finite size of an 

element, for example, let us to take d = r0. As we have shown in previous reports 

[1], it is quite enough for a plane wave of such spatial resolution of adaptive 

correction both in the field of weak, and in the field of strong fluctuations of 

intensity. Let's check up so whether it for the focused beam. 

Let's remind, that we determine a phase on an element of the subaperture by the 

size d through average complex amplitude 

9  = arg(t7); Ü = —^ \\u(x,y)dxdy 
J   <f . (2.4) 

Roughly speaking, we interchange the position operation of averaging on a 

subaperture and operation of calculation arctang function (more precisely - main 

meaning of argument). Thus we avoid trouble the definitions, connected to a 

problem, of a continuous phase on the aperture with presence phase dislocations. 

Other question - what type of the optical wavefront sensor is capable to execute such 

measurement. Let's postpone while its decision. Let's notice, that using such model of 

adaptive system, we avoid a question about it physical realization, but thus to allow 

to keep in mathematical model parameter describing the spatial resolution of adaptive 

correction - the size d. In our case this size is the same as for the wavefront sensor, 

and as element of a compound corrector. 

Let's consider results of numerical modeling presented on Fig.2.3. Three curves 

here are shown: one for the infinite spatial resolution (d   =   0) and two for d = r0 

(only in for first case is corrected only average phase, and in the second case - 

additionaly and local inclination). It is seen that in a general the difference between 
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these three variants not so principal. And though the efficiency of adaptive system 

with the infinite spatial resolution is higher, the greater meaning has length of a path. 

2.3. Two-colour adaptive system 

The completely new character is got in light of occurrence phase dislocations with a 

task about two-color adaptive correction. The problem arises owing to necessity of 

scaling phase aberrations from length of a wave of reference radiation \ on length of 

a wave of corrected radiation X. If the correction on length of a wave 4. equal 

(pr+2nn is determined, even in case of complete absence fluctuations of intensity 

reference indifmition composed 2nn essentially influences on result of phase 

correction. Really if the compound mirror brings in an additional optical difference 

of a path, determined as 

A/ = (Ar 12n)(<pr + 2nn), 

that on other length of a wave we in result shall receive change of a phases, equal 

(p = (Xf. I X){cpr + 2nn). 

Let's notice for clearness that the sizes <p, <pr and n are functions of cross 

coordinates (x, y), which here for brevity are omitted. If, for example (4. /X) = 1/2, 

the difference of phases between edges of break of wavefront equal In for a 

reference wave turns in n for corrected wave, i.e., the fluctuations which would 

develop in a sinphase will become to develop in contraphase. Thus indefinition 

composed 2n, not having any meaning on length of a wave ^., can result in cardinal 

consequences with transition to other length of a wave. 

Thus already statement of a task about use of reference radiation with other length 

of a wave is coordinated to algorithm incorporated in the wavefront sensor. Basically, 

in two-colour adaptive system it is more logical to measure just aberrations of 

wavefront describing fluctuations of the differences of optical length of the way A/, 
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instead of fluctuations of a difference of phases. However to measure optical length 

of a way directly we can not, and calculation A/ as product of the size of the 

subaperture d on the measured local inclinations give large mistake in the range of 

strong fluctuations. Even if we shall determine a surface of wavefront of a reference 

wave, the presence of points dislocations and lines of breaks of wavefront again 

results us to exact to the same problem. 

As the task of two-colour correction is complex and itself multifactors, we shall 

not to complicate it by introduction of additional spatial scale - size of a beam. Let's 

consider while some results of numerical experiment with a plane wave. 

Here are results for several variants of system. Among themselves they differ by 

measurable values (local inclination, or " average " complex amplitude). The second 

difference it is a algorithm of reconstruction, which give way for determination 

composed 2n. 

Numerical "sensor" of wavefront calculates average complex amplitude on each 

subaperture Uy, then appropriate phase (argument of complex number) and matrix of 

differences of phases between the next subapertures: 

<Pij = ndpuj); A?y = <Pi+\j - <Pi+ij> A# = <Pij+\ ~ <Pi+V • 

The calculation of differences of phases seems by a superfluous step, as we as are 

going to calculate a phase. However we should from any reasons attribute Inrny by 

each if subaperture and just for it we calculate differences of phases and processable 

received file Ay with the help of algorithm of reconstruction of a phase. 

The main lack of this approach - possible passing of an integer of lengths of 

waves even in absence fluctuations of intensity, as the functionarg returns meanings 

in a range [0, 2n], that corresponds [0, A] in the terms of optical length of a way. 

However nobody guarantees that an optical difference of a course between beams has 
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carried out on distance d less A. If (as in our case) d = r0, the structural function on 

such Öäciinä is equal Ds(p = d) = 6,88 (d/r0)f
3 = 6,88 rad. The accordingly 

root-mean-square of a difference of a path expressed in lengths of waves, is equal 

(6,88)1/2/2;r = 0.4 A. Situations thus are quite probable when the optical difference 

of a path is equal, we shall about \,\A and the sensor of a difference of phases give 

meaning 0,l*2;r = 0.628 rad. 

Single way to find out that actually difference of an optical course was more 

length of a wave - to reduce the size of an element of the sensord, we shall tell in 2-3 

times, and make sum the received differences of phases. Other way - to measure a 

local inclination of wave front and multiply it on the sized. However last way give a 

mistake, which value quickly grows in the field of strong fluctuations of intensity. 

To illustrate our reasonings we shall consider results of numerical modeling 

submitted in a Fig. 4-6. All of them are executed for a plane wave with the following 

ratio between the size of a focusing lens D, radius coherent r0 and size of the 

subaperture d:D/rQ = \0,d=r0. Randomly non-uniform media was simulated by 10 

random screens and intensity in focal plane of a lens averaging on 10 random 

realizations. Length of a path was set equal LI Ld =0.01, i.e. fluctuations of intensity 

on an exit from random media practically are absent. 

We varied length of a wave of reference radiation, A,.. Let's notice that length of a 

wave enters into the formulas for Ld and r0. As in our task two radiations with 

different lengths of waves now are examined, it is necessary to concretize, what 

length of a wave enters in normalization of parameters of a task. We have decided to 

use for normalization fixed length of a wave of corrected radiation A. Therefore it is 

necessary to mean, that normalized length of a path LI Ld and size of the aperture 

D/r0 for reference radiation with length of a wave A, will differ. In the descriptions 
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of results of numerical modeling we always indicate sizes the waves, appropriate to 

initial length, X. 

On Fig.4 is shown dependence of the normalized intensitySR (Strehl parameter) 

in focus of a lens from the ratio X.IX. In a figure are two diagrams - they are given 

differ by a way of definition of a array of differences of phases Apy. In one case 

(curve a) a difference of phases were determined through the argument of average 

complex amplitude U, and in the other - as product of a local inclination on the size 

of the subaperture (the local inclination also is calculated through^/ and gradient U) 

[!]■ 
In both cases used algorithm based on the decision MNE (modified normal 

equation) offered in [2, 3] and used by us in previous reports those of [1]. In this case 

it gives the same result as algorithm based on the decision UNE (unmodified normal 

equation), as fluctuations of intensity negligible are small (L/Ld   =  0.01 « 1). 

As we also expected, the direct measurement of a difference of phases with 

scaling on longer length of a wave results in fast reduction of efficiency of 

correction. Already with X, = 0.8 X parameter Strehl SR falls twice, and with 

reduction X,. up to 0.52 the meaning SR is reduced simply catastroghicaly. At the 

same time second variant of the wavefront sensor, which uses meanings of local 

inclinations, works practically equally well in all range of calculations 0.51 < X,. < 

1.5/1. Some reduction SR with X,. < X is explained by small growth fluctuations of 

intensity in reference radiation with reduction of length of a wave X,., 

It is interesting to look in what ranges the efficiency of correction for system with 

the sensor of local inclinations will be kept. Let's consider longer paths. Let's set 

normalized length LI Ld = 0.25... 1.0 and also we shall vary reference length of a 

wave Xf in wider ranges - from 0.5X up to 10X. The results of numerical modeling 
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are represented on Fig.4. We see, what even with equal lengths of waves, i.e. with/V 

= X, the normalized intensity of focal spot is less than the diffraction-limited 

meaning. As we know, it is caused by that in system with the local inclinations sensor 

under growth fluctuations of intensity the mistake of estimation of a difference of 

phases is fast increasing. 

With reduction of length of a wave of reference radiation the fluctuations of 

intensity in it grow and accordingly efficiency of correction quickly falls. With 

change \ from X up to 0.72 parameter Strehl decreases almost twice. Increase of 

length of a wave the reference radiation results at first in some increase of meaning 

SR with change \ from X up to 2X and with transition on more long wavelenght 

reference radiation, the efficiency of adaptive correction begins to decrease, however 

it is enough slowly. Parameter Strehl decreases approximately twice, with increasing 

X,. up to 6/1 and three times with increase X,. up to 8/1. 

Thus use as reference more long wavelenght radiation results in insignificant 

change of efficiency of correction with X,. = X... 3 X, and with transition to the longer 

waves - to slow reduction of efficiency of correction. To make here, apparently, 

already anything it is impossible, as it is connected not with fluctuations of intensity 

(they decrease with growth X) or unsuccessful choice of the sensor of distortions, 

and it is simple with diffraction. With growth of length of a wave the phase 

distortions pass in faster peak and it does not result in growth fluctuations of intensity 

only because phase distortions decrease with increase of length of a wave. 
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Fig.2.1. Dependence of parameter Strehl from normalized length of a path./)/r0 

10,1   -  Plane wave, 2   -  Focused gaussian beam. 
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Fig.2.2. Dependence of parameter Strehl from normalized length of a path with 

correction " potential part" of phases. The wave-front sensor of complex amplitude 

uses algorithm based on the decision NE, d«r0. 
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Fig.2.3. Dependence of parameter Strehl from normalized length of a path with 

correction with the finite size of an element adaptive system. The sensor of complex 

amplitude uses algorithm based on the decision MNE, 1 -d   «   r0, 2 - d   =   r0, 

correction " average " phases and inclination, 3 - correction only " average " phases. 

Fig.2.4. Dependence of parameter Strehl from normalized length of reference 
r 

radiation for two types of the wave-front sensor: A - sensor of a "average" phase, A - 

sensor of a local inclination. 
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Fig.2.5. Dependence of the normalized intensity (parameter Strehl) from length of 

a wave of reference radiation. Meanings of normalized length of a path Llkrl 

(normalized on length of a wave of corrected radiation): 1 - 0.25, 2 - 0.5, 3 - 0.75, 4 

-1.0. 
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